

PRIME-VR2_D_WP6_KRL_D6.1- PLATFORM_IMPLEMENTATION_PLAN

D6.1
PLATFORM IMPLEMENTATION PLAN

Grant Agreement nr 856998

Project title Personalised recovery through a multi-user
environment: Virtual Reality for Rehabilitation

Project Acronym PRIME-VR2

Start day of project (dur.) October 1st 2019 (3 years)

Document Reference PRIME-VR2_D_WP6_KRL_D6.1-Platform
Implementation Plan

Type of Report PU

Document due date 31/03/2020

Actual date of delivery 15/10/2020

Leader KRL

Responsible Gábor Vadász (KRL)

Additional main contributors
(Name, Partner)

Robert Sarosi, KRL
Robert Mooijman, CPD
Anthony Demanuele, FSG

Document status Final [Reviewed by Georgi Georgiev (UOO) and
Yazan Barhoush (UOO)]

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 856998

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 2

This document is shared under the following Creative Commons License

You are free to:

- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material

Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license,

and indicate if changes were made. You may do so in any reasonable
manner, but not in any way that suggests the licensor endorses you or your
use.

- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must

distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological

measures that legally restrict others from doing anything the license permits.

Full terms can be found at https://creativecommons.org/licenses/by-nc-
sa/4.0/legalcode

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 3

Table of contents

EXECUTIVE SUMMARY 9

1 INTRODUCTION 22
1.1. TERMINOLOGY 22

2 TECH STACK 25
2.1. PROGRAMMING LANGUAGE 25

3 UNITY SDK 26
3.1. INTRODUCTION 26
3.1.1. PACKAGE 26
3.1.2. UNITY VERSION 27
3.1.3. PIPELINE COMPATIBILITY 27
3.1.4. SUBMODULES 27
3.2. DOMAINS 27
3.2.1. WEB 27
3.2.2. VR ECOSYSTEM 28
3.2.3. UNITY SDK 28
3.2.4. DISTRIBUTION PLATFORM 28
3.3. FRAMEWORK 28
3.3.1. BACK END 29
3.3.2. WEB PORTAL 29
3.3.3. PRIME-VR2 UNITY SDK 30
3.3.4. PLATFORM LOADER 30
3.3.5. VR USER INTERFACE 30
3.3.6. GAME 30
3.3.7. OPENXR 30
3.3.8. CONTROLLER 30
3.3.9. CUSTOM INPUT 31
3.3.10. INPUT MAPPING 31
3.4. REQUIREMENTS 31
3.4.1. SUPPORTED DEVICES 31
3.4.2. UNITY PLATFORM CONFIGURATION 31
3.4.3. BUILD TARGET ENVIRONMENTS 31
3.4.4. AUTOMATIC CONFIGURATION 31
3.5. MODULES 32
3.5.1. PRIMEVR2_SERVICE 32
3.5.2. PRIMEVR2_INPUT 32
3.5.3. PRIMEVR2_GAME 32
3.5.4. PRIMEVR2_UI 32
3.6. API FUNCTIONS 32
3.6.1. SERVICE 33
3.6.2. AUTHENTICATION 33
3.7. SAMPLE SCENES 34
3.7.1. SAMPLE SCENE INDEX 34
3.8. PLATFORM LOADER 34
3.9. REALTIME ASSISTANCE 34
3.10. GAME STRUCTURE 35

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 4

3.10.1. GAME 35
3.10.2. ENVIRONMENT 35
3.10.3. EXERCISE 35
3.10.4. EXERCISE SESSION 35
3.10.5. GAME SESSION 35
3.10.6. ACTIVITY 35
3.11. SCORE SYSTEM 35
3.11.1. EXERCISE METRICS 35
3.11.2. SCORE CALCULATION 36
3.11.3. USER CALIBRATION 36
3.12. LEADERBOARDS 36
3.13. ACHIEVEMENTS 36
3.14. ANALYTICS 37
3.15. ACCESSIBILITY TOOLS (VR) 37
3.15.1. MOTION COMPENSATION 37

4 WEB PLATFORM 38
4.1. INTRODUCTION 38
4.2. ARCHITECTURE 38
4.3. USER TYPES 40
4.3.1. PERMISSIONS 40
4.4. USER MANAGEMENT 43
4.4.1. USER LIST 43
4.4.2. CREATE USER 44
4.4.3. NEW USER FLOW 46
4.4.4. PATIENT OVERVIEW 46
4.4.5. EDIT USER 47
4.4.6. DISABLE/ENABLE USER 47
4.4.7. DELETE USER 48
4.4.8. EDIT OWN USER PROFILE 48
4.5. LOGIN 49
4.5.1. FIRST LOGIN 49
4.5.2. FORGOTTEN PASSWORD 50
4.6. HOSPITAL MANAGEMENT 50
4.6.1. HOSPITAL LIST 50
4.6.2. CREATE HOSPITAL 51
4.6.3. MANAGE HOSPITAL USERS 51
4.6.4. EDIT HOSPITAL 51
4.6.5. DISABLE/ENABLE HOSPITAL 51
4.6.6. EDIT OWN HOSPITAL PROFILE 52
4.7. GAMES 52
4.7.1. GAMES LIST 52
4.7.2. CREATE GAME 53
4.7.3. EDIT GAME 54
4.7.4. DISABLE/ENABLE GAME GLOBALLY 54
4.8. PATIENT OVERVIEW 54
4.8.1. LIST OF GAMES 55
4.8.2. GOAL REVIEW 55
4.8.3. ACTIVITY FEED 56
4.8.4. GAME DEFINITION 56
4.8.5. CREATE SESSION 57
4.8.6. EDIT SESSION 57
4.8.7. DELETE SESSION 57
4.8.8. LEADERBOARD 58

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 5

4.9. MESSAGING 58
4.9.1. MESSAGE ICON 58
4.9.2. MESSAGE THREAD VIEW 58
4.9.3. REAL-TIME DELIVERY 58
4.9.4. COMMENTING ON GAMEPLAY SESSIONS 59
4.10. NOTIFICATIONS 60

5 GAMEPLAY API 61
5.1. AUTHENTICATION 61
5.2. CONFIGURATION ENDPOINT 61
5.3. SESSION ENDPOINT 61

6 ACHIEVEMENTS 62

7 LEADERBOARDS AND CHARTS 63

8 PERFORMANCE METRICS 67

9 VALIDATION CRITERIA 67

10 CI/CD 68

11 CONCLUSION 68

APPENDIX 1. 70

12 USER INTERFACE MOCK-UPS 70

APPENDIX 2. 75

13 CODING GUIDELINES 75
13.1. INTRODUCTION 75
13.2. GUIDING PRINCIPLES 75
13.3. THE RUNDOWN 75
13.4. GENERAL GUIDELINES 75
13.4.1. FILE LAYOUT 75
13.4.2. USING DIRECTIVES 76
13.4.3. DECLARING TYPES 77
13.5. MEMBER DECLARATIONS 78
13.5.1. METHODS 79
13.5.2. PROPERTIES 79
13.5.3. TYPE INFERENCE 80
13.5.4. OBJECT AND COLLECTION INITIALIZERS 80
13.5.5. INDENTATION 81
13.5.6. WHERE TO PUT SPACES[1] 81
13.5.7. WHERE TO PUT BRACES 83
13.5.8. LONG ARGUMENT LISTS 87
13.5.9. CASING 87
13.5.10. INSTANCE FIELDS 88
13.5.11. THIS 88

14 CODE COMMENTING GUIDELINES 91
14.1. SIMPLE COMMENTS 91
14.2. MULTILINE COMMENTS 91

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 6

14.3. COMMENTING OUT CODE 92

15 NAMING GUIDELINES 92

16 LAMBDAS 100

17 COMMIT MESSAGE CONVENTIONS 103
17.1. GOALS 103
17.2. GENERATING CHANGELOG.MD 103
17.2.1. RECOGNIZING UNIMPORTANT COMMITS 103
17.2.2. PROVIDE MORE INFORMATION WHEN BROWSING THE HISTORY 103
17.3. FORMAT OF THE COMMIT MESSAGE 104
17.3.1. SUBJECT LINE 104
17.3.2. MESSAGE BODY 104
17.3.3. MESSAGE FOOTER 105
17.4. EXAMPLES 106

APPENDIX 3. 108

ENVIRONMENTS CHECKLIST 108

APPENDIX 4 110

PRIMEVR2 ENVIRONMENTS 110

1. GARDEN/ GREENHOUSE ENVIRONMENT 111

2. SUPERMARKET ENVIRONMENT 127

3. CRAFTS WORKSHOP ENVIRONMENT 139
17.5. VISUAL 140
17.6. MODALITY 141
17.7. ASSISTANCE 141
17.8. SOCIAL 141
17.9. SUPPORTED ACTIVITIES 142

4. UNDERWATER ENVIRONMENT 143
17.10. VISUAL 143
17.11. MODALITY 144
17.12. ASSISTANCE 144
17.13. SOCIAL 144
17.14. SUPPORTED ACTIVITIES 144

5. SPACE ENGINEER ENVIRONMENT 146
17.15. VISUAL 146
17.16. MODALITY 147
17.17. ASSISTANCE 149
17.18. SOCIAL 149
17.19. SUPPORTED ACTIVITIES 150

6. COOKING SHOW ENVIRONMENT 151
17.20. VISUAL 151
17.21. MODALITY 152

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 7

17.22. ASSISTANCE 152
17.23. SOCIAL 152
17.24. SUPPORTED ACTIVITIES 153

7. CAR ENVIRONMENT 154

8. MUSIC ROOM ENVIRONMENT 166
17.25. INSTRUMENT BREAKDOWN 170
17.26. 172
17.27. GAME REFERENCES 174

9. OFFICE ENVIRONMENT 175

10. BAR ENVIRONMENT 179

APPENDIX 5 183

CONTROLLER INTERACTION MATRIX 183

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 8

VERSION HISTORY

COMMENTS RESPONSIBLE VERSION DATE
First draft Robert Sarosi 0.8 20/02/2020
Second draft Robert Sarosi 0.9 09/03/2020
Peer reviewed Georgi Georgiev and

Yazan Barhoush
1.0 23/03/2020

Updates based on
Peer review
Extended API
documentation for
Web Platform
Backend

Robert Sarosi 1.1 26/03/2020

Removing high-risk
security
information + add
notice

Gabor Vadasz 1.2 14/04/2020

Added more
information about
environments,
games and
selection protocols
with added
references to D2.1.

Anthony Demanuele 1.3 15/10/2021

Added more
information about
web-portal with
references to D2.1
and CI/CD, system
architecture section

Gabor Vadasz 1.4 28/10/2021

Peer reviewed Georgi Georgiev and
Yazan Barhoush

2.0 26/10/2020

Updated based on
peer review

Gabor Vadasz 2.1 28/10/2021

Released CC
version

Gabor Vadasz 2.1 31/10/2021

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 9

EXECUTIVE SUMMARY

The Implementation Plan contains all the technical and functional information, and
documentation what is needed to implement the VR-HABIT platform. The rules and guidelines
that are included in the implementation plan guarantees that the environment and the quality
stays consistent in the whole project. Because technology is likely to change during the project,
this document will be continuously updated.

The main goal of the Platform Implementation Plan is to identify all the needed business logics
and the functionalities of the VR-HABIT Platform. The deliverable is the result of the discussion
of all the technical challenges of the project made by WP6 members. Discussions were
extremely important to define the initial list of business and technical requirements for the
overall Platform, and for each single component. Three Platform components have been
identified and detailed in the document: Web Platform, VR Ecosystem, and Rehabilitation
Games.

Web Platform

The web Platform consists of a client portal and back end that allows patients and therapists
to log and review their data and progression statistics within any of the PRIME-VR2
implemented games. WP6 used questionnaire and 1 on 1 interview methodology to explore
the needed functionality and organized 7 focus group meetings and interviews to collect the
required information. All these data have been collected and organized by the KRL team and
turned it into a functional and a brief technical documentation. This documentation is one of
the main parts of the Platform Implementation Plan.

VR Ecosystem

The VR ecosystem consists of hardware and software components included in the VRHAB-IT
platform; three types of custom-made controllers are recognized within an existing commercial
virtual reality hardware ecosystem. Sensory input will be mapped to existing controllers or
functionality will be extended via additional drivers. The implementation of VR ecosystem
modules (like the games) will be based on the PRIME-VR2 Unity SDK. The functionality has
been abstracted into a set of separate modules. All modules will include code samples and
example scenes in order to define a technological standard.

Rehabilitation Games

The game implementation is based on the Unity game engine and the PRIME-VR2 Unity SDK.
Unity is a popular game engine that integrates with all popular VR hardware platforms and is
also the main development tool used by key partners in the project, with valuable accumulated
expertise. The current version in use within the project is 2019.4.5f1 but this is bound to be
updated frequently over the course of the project. Each game will be built and uploaded as a
separate executable so once submitted and reviewed, the latest version of each game will be
made available through a game loader interface made available as part of the PRIME-VR2
Unity SDK.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 10

The games are made up of 3 dimensional environments built with tools such as Autodesk
Maya, Autodesk 3Ds Max and textured with industry standard tools such as Substance painter
and Adobe Photoshop. During the last few months, the team has had many discussions with
other Consortium members to help outline the most sought-after environments that would
encourage patients to stay focused on their goal. A pattern quickly emerged during these
brainstorming sessions. The chosen environments can be categorised into two main
categories: Everyday life environments and Aspiration or fantastic environments.

Everyday life Aspiration or fantastic

1. Crafts Workshop	
2. Greenhouse	
3. Cooking show	
4. Music room	
5. Office	
6. Bar	
7. Supermarket	
8. Gym	
9. Tennis court	
10. Football pitch	

A. Space travel	
B. Underwater exploration	
C. Peaceful natural environment	
D. River rafting	
E. Mountain climbing

The first environments to be prototyped were the real-life environments that patients will
automatically be familiar with. Different level of detail and styles were used during concepting
stage so these varied designs can be used during shortlisting stage as part of the established
protocol for the selection of the final three to five environments. In addition to this, user testing
and iterative design will determine the most successful environments that will make it to the
end of the project. The protocol for selecting the final environments is outlined in more detail
in D7.1.

The action items in each of the environments will have high contrast with backgrounds to make
call to actions as clear as possible. In the everyday life environments, we try to mimic
simplified real-life scenarios in contrast with the aspiration or fantastic environments where
we create experiences that are impossible or very hard to access in real-life. Based on the
requirements of D2.1, it is important to engage people in activities what are meaningful and
valued and help collaboration and competition with other people.

D7.2 Persona Report highlights the three different personae targeted by VRHAB-IT;
Hyperkinetic movement disorders in Young People (GDIH), Musculoskeletal injury (STJH) and
Stroke (KNRC). The target audience for each group tends to vary from young kids for GDIH to
seniors at KNRC and anything in between for STJH. For this reason, the shortlisted list of ten
environments tries to encompass each of these requirements into reusable environments
which cater for at least one or more of these target groups.

Whilst the final selection process is still not in progress, we envisage that the younger age
groups will prefer aspirational or fantastic environments such as Space Travel or Underwater
exploration and some of the real life environments which allow for freedom of expression such

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 11

as the Crafts workshop, Music room or the Cooking show. The other two target groups might
gravitate more towards the Greenhouse, Bar and Supermarket environments.

The activities within each of these environments will still overlap to cater for the different goals
and concerns as set by the therapist as outlined in D7.2 - Table 5 (Proportion of total concerns
identified by young people with dystonia, classified by domain, with examples of concerns
given) with D7.2 - 4.2.1 (Living with Musculoskeletal injury) and D7.2 - 4.3.1 (Living with
Stroke).

It is important to note that when building virtual reality environments, one of the top
requirements is to build them with enough detail to visually please the eye but without dropping
the frame rate as this might induce sickness/nausea. We will use trade-offs such as increased
loading times to gain a higher frame rate. The target is 90 frames per second on a mid to high
level gaming machine.

Appendix 3 (VR Environment Checklist) outlines a detailed checklist that each concepted
environment must adhere to. These include:

1. Visual details – anything that the player can see	
2. Audio details - anything the player can hear
3. Physical feedback - any elements in the scene that provide haptic (or similar)

feedback to the player

The following are some of the concept art with references, followed by a snapshot of the 3D
modelled environment currently in development.

1. Crafts room concept and 3D environment	

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 12

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 13

2. Greenhouse concept and 3D environment	

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 14

3. Kitchen/Cooking show concept and 3D environment	

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 15

4. Music room/theatre concept and 3D environment	

5. Office concept and 3D environment	

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 16

6. Pub concept and 3D environment	

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 17

7. Supermarket concept

A. Horticulture room in Space concept and 3D environment	

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 18

B. Underwater concept	

For each of the selected environments, the team ran through the checklist to design an
environment that fits the requirements of VRHAB-IT. The full environment specifications can
be found in Appendix 4 (PrimeVR2 environments). For each of these we outlined 5 aspects:

1. Visuals: This section establishes a theme and sets the scene for various objects and
other virtual entities around the Player. These include static environment objects as
well as interactive props. Each layout is designed to provide a space where players
can feel safe and in-control while reducing unnecessary movement which can be
challenging considering the spectrum of patients that will inhabit such space.
Environments range from common day-to-day locales to fictional ones as we believe it
gives us greater flexibility to reach a larger number of patients.
	

2. Modality: Provides a definition on how the environments interface with the various
activity stations at play and for each it lists how the patient will be positioned to play.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 19

Given the physical impairments of some of the patient classes we have opted where
possible to support the sitting down position. This will give us the possibility of re-using
the same environment across the whole spectrum of patients in VRHAB-IT.
	

3. Assistance: Patients may be unable to perform specific tasks. For this reason, we
have listed several possibilities within the game space of how these tasks can be still
be overcome with the assistance of a third-party.
	

4. Social: Different activities provide different social interaction potential. In this section
we outline any potential ways in which the patient, their actions or even their creations
can be used to interact socially with other players.	
	

5. Supported Activities: Most importantly in this section we give a sample of the
activities that can be performed by the patient to drive the gameplay. Here we define
each activity while clearly outlining how the patient is supposed to interact it and thus
establishing the requirements for the custom controller. These activities together with
the aspects are designed to engage the patient in a relaxing yet challenging,
environment to drive the rehabilitation process.	

Once the three to five environments are selected, an array of games will be designed in detail.
The expected outcome for each of these games includes but is not limited to exercises that
enhance reach, range of movement, consistent movement, accuracy, strength and stamina.
We will briefly describe each of these exercises and then follow up with a few examples of how
these could be used in some of the environments mentioned above while making sure they
make best use of the custom controllers being built as part of this project and confirming to the
ICF framework.

Appendix 5 (Controller interaction matrix) sets out the language between WP2, WP3, WP4,
WP5 and WP6 in terms of the core definitions of what the controller is required to do and how
the custom controller capabilities will be used within the games.

The International Classification of Functionating, Disability and Health (ICF) framework
developed by the WHO defines a simplified framework to approach patient care with a focus
on the positive abilities of each individual patient. The ICF is made up of three components:

1. Body functions and structures	
2. Activities
3. Participation

Appendix 4 (PrimeVR2 environments) sets the groundwork for the game design work in
each of the ten concepted environments and how they map to the ICF framework. Over and
above these general guidelines, D2.1 outlines additional requirements for each of the
developed games including:

1. Competitive/collaborative	
2. Reflect real activities	
3. Difficulty levels	
4. Challenging but maintain motivation	

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 20

5. Enjoyable	
6. Engaging	
7. Therapeutic goals	
8. Bonding/ team spirit	
9. Exercise	

A strict protocol is also being designed on how to score each game or task activity in a session.
WP2 and WP7 recommended the Melbourne Assessment scoring methodology. This is made
up of 3 broad categories; range of motion, fluency and strength. Reach and Range of
movement applies to all patients and the parameter in this game would be how far a hand can
twist, or how far an arm can reach. Consistency and accuracy games are targeted especially
for dystonia patients where we monitor their ability to achieve a correct result consistently and
accurately over time. Strength and stamina games apply to sports and stroke patients trying
to rebuild their muscle tissue by doing an activity with forced feedback with varying durations.

We will use the first set of games to explain how such an activity could be modelled differently
according to the environment with limited changes. Let’s assume a range of movement game
for a patient with tennis elbow where the user is asked to try and get to stretch and increase
the elbow movement. At the gym, this movement could take shape in the form of the player
sitting on a bench while lifting a dumbbell. At the river rafting environment, we could re-use a
similar player position and movement but this time the player is manning the rows to navigate
safely down the river. Similarly, the player may be asked to pick up heavy objects from the
seabed while underwater diving.

Each of these games will have to be validated before it is used on patients. The first validation
pass will be done internally within WP6 to ensure correct input and output behaviour. This will
in turn be reviewed by the living labs that are the experts in the field. With ethics approved
and patients willing to test the games, we will also strive to get the games validated and fine-
tuned at this level as well.

Anonymized metrics will also be added to different key events within each game so we can
monitor and fine tune different parts of the games once these are being actively used. These
metrics will include but are not limited to frequency of use, fail rate, results progression over
time and session times. Through these data points we can do statistical analysis and find
common pain points and address them accordingly.

WP6 has also identified and considered major data privacy and security threats. These
questions mainly focused on GDPR compliance and highly-sensitive information about health
status. After a thorough discussion WP6 members came up with the following solution: the
system will keep anonymized data only in the Web Portal, and all the additional data will remain
in the Clinic/Hospital database. Any direct connection between the Web Platform and the
Clinic/Hospital systems and databases are not planned, because every Clinic/Hospital system
is different and has its own datasets and tools. WP6 members concluded that creating such a
close integration of the two systems would introduce high risk to the project. This is why WP6
decided to use only the Patient ID as a unique identification number and a nickname to identify
the patient. The only personal ID that will be stored is the email address, because the system
needs to communicate with the patient.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 21

Results achieved in WP6 at M12

• Submission of deliverable D6.1 Platform Implementation Plan

• Communication and management software and routes were discussed and agreed on

• Organization of 7 focus group meetings to collect users’ stories

• Definition of the requirements of the PRIME-VR2 Web Platform

• Specification of the PRIME-VR2 Web Platform and its functionalities

• Definition of the PRIME-VR2 Web Platform design mock-ups, including the modules
and communications, with the definition of use cases and scenarios of interaction
among the components

• Organization of 22 WP6 meetings for discussing the platform implementation plan

• Creation of Web Platform functional and technical documentation

• Introduction of coding Guidelines to the team to make proposed guidelines for the
coding

• The Unity SDK functionality has been abstracted into a set of separate modules that
will be used as technological standard (platform loader, service module, game module,
controller input module)	

• Discussion and filing of Project Risk Assessments

Notice:

Due some high-risk security information, we changed these to “obscured” expression.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 22

1 INTRODUCTION

1.1. Terminology

Term Meaning

Game Engine A game engine is a software-development
environment designed for people to build
video games. Developers use game engines
to construct games for consoles, mobile
devices, and personal computers.

Unity3D Unity is a cross-platform game engine.

Unity SDK A software development kit (SDK) is a
collection of software development tools in
one installable package. They ease creation
of applications by having compiler, debugger
and perhaps a software framework.

Web Portal Web Portal is a web application that
coordinates the activity of hospital
supervisors, doctors and patients in order to
achieve successful VR therapy outcomes.

API An Application Programming Interface (aka
API) is an interface or communication
protocol between different parts of a
computer program intended to simplify the
implementation and maintenance of
software. An API may be for a web-based
system, operating system, database system,
computer hardware, or software library.

API Key A special string that is functioning as a secret
password between the API and the API
caller. This secures the API so unauthorized
calls wouldn’t be processed and can help to
prevent data leakage.

REST Representational State Transfer (REST) is a
software architectural style that defines a set
of constraints to be used for creating Web
services or API. Web services that conform
to the REST architectural style, called
RESTful Web services, provide
interoperability between computer systems
on the Internet.

JSON JSON (JavaScript Object Notation) is a
lightweight data-interchange format. It is

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 23

easy for humans to read and write. It is easy
for machines to parse and generate. It is
based on a subset of the JavaScript
Programming Language Standard ECMA-
262 3rd Edition - December 1999. JSON is a
text format that is completely language
independent but uses conventions that are
familiar to programmers of the C-family of
languages, including C, C++, C#, Java,
JavaScript, Perl, Python, and many others.
These properties make JSON an ideal data-
interchange language.

User User is a person who has some level of
access in the system. The User interacts with
the system and get results based on
permissions.

User Account / Profile The User Account / Profile contains personal
(eg.: Name, Email) and non-personal
information (eg.: UserID, Group,
Permissions) about the User.

Group A Group is a logical set of Users. It has a
Group Name and a Group can have a special
set of permissions what defaults to all Users
who are included in the Group.

Permission All available operations in the system and
whether different user types can perform
them.

Authentication The Authentication is the process when the
system checks the User’s credentials. This is
a gatekeeper to secure the system from
unwanted access. This is mostly happening
when the User logs in or getting back to the
system after a while.

Authorization The Authorization is the process when the
system checks the User’s permissions. This
is a gatekeeper to secure the system from
unwanted access. This happening at every
API call.

JWT JSON Web Tokens are an open, industry
standard RFC 7519 method for representing
claims securely between two parties (mostly
between client and backend or backend and
backend communications). Built on top of
JSON.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 24

C# C# is a general-purpose, multi-paradigm
programming language encompassing
strong typing, lexically scoped, imperative,
declarative, functional, generic, object-
oriented, and component-oriented
programming disciplines. Developed and
maintained by Microsoft. Developers using
C# to develop a Unity3D application.

NodeJS Node.js is an open-source, cross-platform,
JavaScript runtime environment that
executes JavaScript code outside of a
browser.

Container A Container is a standard unit of software
that packages up code and all its
dependencies so the application runs quickly
and reliably from one computing
environment to another.

Docker Docker is a set of platform as a service
products that use OS-level virtualization to
deliver software in packages called
containers. Containers are isolated from one
another and bundle their own software,
libraries and configuration files; they can
communicate with each other through well-
defined channels.

Kubernetes Kubernetes is an open-source container-
orchestration system for automating
application deployment, scaling, and
management. It was originally designed by
Google, and is now maintained by the Cloud
Native Computing Foundation.

Version Control System A component of software configuration
management, version control, also known as
revision control or source control is the
management of changes to documents,
computer programs, large web sites, and
other collections of information.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 25

2 TECH STACK

2.1. Programming Language
There is a wide variety of programming language available today. Older and more robust ones
like C / C++ and newer ones like C#, NodeJS, Go which provides better solutions for today’s
coding problems (async, multi-threading, heavy network communications). There is no good
or bad programming language, but some are better than others when facing specific
challenges. With a monolithic approach, the developer chooses only one programming
language which is used exclusively in the whole software package. Another hallmark of
monolithic approaches is that all is contained in one software package. In polyglot
programming the developer has the freedom to write different parts of the software in different
languages. This way the developer can leverage most of the benefits of each language. A
danger of polyglot approaches is that the codebase becomes fragmented in many different
languages and requires a variety of skillsets to maintain.

In the Prime-VR2 project we choose polyglot approach but limit the number of languages to a
small set: C#, NodeJS. For certain heavy data and network traffic handling, using the language
Go language is proposed.

C# is developed and maintained by Microsoft. Because it’s wide adoption in education it’s easy
to find a C# developer in any seniority level. Also the chosen game engine, Unity3D using C#
as its main programming language.

NodeJS is a free, open-source language built on top of Javascript. One of the ideas behind
the language is to reuse the front-end web knowledge when developing the backend. Most of
the web programmers know how to code in Javascript. This makes it easier to find developers
and maintain the code base. Javascript also has a huge online community, which makes
finding answers and solutions easy.

Go is an open source, compiled and statically typed programming language developed and
maintained by Google. The main goal is to reach the C++ performance but without the
difficulties what C++ could mean. Go is only a few years old language but it is gaining
popularity. It is offering a simple syntax, a fast compiler and supports concurrent programming
from the very beginning.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 26

3 UNITY SDK

3.1. Introduction
This section describes specifications for content and application development made for
PRIME-VR2 by using the PRIME-VR2 Unity software development kit (SDK), within the Unity
3D game development engine (Unity).
This section provides guidelines for application development within the PRIME-VR2
ecosystem and elaborates on all functionality within the framework capabilities.
This document aims to be a complete overview of the SDK. Please consider this document as
a work in progress as not all details within the project’s deliverables have been defined yet and
new functionality will evolve during development.

3.1.1. Package
The SDK is provided in the format of a Unity Package. After importing, developers can see the
following directories:

Figure 3.1 Directory structure of the SDK plugin

Each sub-directory under Assets>PrimeVR2SDK_Unity corresponds to a function in the SDK.
The PrimeVR2_Samples directory provides reference scenes to display practical use of each
of the SDK functionalities.

● Editor contains scripts that extend functionality of the Unity editor required by
components within the SDK.

● Plugins contains scripts needed for low level communication with external platforms.
● Primevr2_Game contains game logic related functions.
● Primevr2_Input contains controller input related functions.
● Primevr2_Samples provides a selection of sample scenes to display the use of the

SDK
● Primevr2_Service contains any service-related functionality, like authorization and data

communication with the PRIME VR2 back end.
● Primevr2_UI contains all user interface related functionality.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 27

3.1.2. Unity version
The SDK is being developed using the latest release of Unity (2019.4.5f1 as of writing) and
will be updated when future stable versions have been released.

3.1.3. Pipeline compatibility
The SDK is built using the standard render pipeline within Unity and is not dependent on a
scriptable render pipeline like the Universal or High Definition Render Pipeline; however, it
aims to be fully extendable to implementation in any of these described pipelines, depending
on the developer's needs.

3.1.4. Submodules
Dependencies and the requirements of submodules or packages will be described here unless
remaining non-existent.

3.2. Domains
Developing content for PRIME-VR2 requires an understanding of the PRIME-VR2 ecosystem.
The system consists of several domains that each serve a different purpose. Figure 1.2
displays the differentiation between these domains; Web, Unity, VR and Distribution.

Figure 3.2 Framework domains

3.2.1. Web
The web domain consists of a client portal and back end that allows patients and therapists to
log in and review their data and progression statistics within any of the PRIME-VR2
implemented games.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 28

3.2.2. VR Ecosystem
Three types of custom-made controllers are recognized within an existing commercial virtual
reality hardware ecosystem, such as HTC Vive. Sensory input will be mapped to existing
controllers or functionality will be extended via additional drivers.

3.2.3. Unity SDK
Development of new game implementations is done using the Unity game engine and the
PRIME-VR2 Unity SDK. The resulting applications, once submitted and reviewed, will be made
available through a game loader interface.

3.2.4. Distribution Platform
Since our main application is in fact a 'game loader', it in itself serves as a means to distribute
games that have been created for the PRIME-VR2 Platform.
We are currently looking into alternatives of hosting the initial platform download.

3.3. Framework
 To understand the functionality of the SDK we should first look at the surrounding
components, as the SDK serves as a mediator between these different end points. This section
describes these components.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 29

Figure 1.3 PRIME-VR2 high level framework

3.3.1. Back end
The back end serves a database and provides an API to handle various interactions consisting
of but not limited to: user management, login authentication, storing and retrieving game
related statistics and serving patient/therapist related data.

3.3.2. Web Portal
A front-end web portal for both patients and therapists to serve user profile settings, progress
and statistics.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 30

3.3.3. PRIME-VR2 Unity SDK
The SDK implemented into Unity provides sample components and building blocks to establish
communication between back end, user input and real-time game progression statistics. The
SDK is the starting point for developers desiring to create new content for the PRIME-VR2
platform.

3.3.4. Platform loader
A desktop entry point for any user willing to download and start new game.
The loader will provide the user with a login screen. From within this environment, the user can
choose which game to start before they enter the complexity of the virtual environment.

3.3.5. VR User Interface
The visual user interface in virtual reality with which a user will interact with further game
related statistics and progression. The SDK will provide template examples displaying best
practice interaction design made with the limited physical capabilities of the patient in mind.

3.3.6. Game
Implementation of game mechanics and visual representation of all game related components,
making use of the PRIME-VR API as a bridge between user, controller input and game statistic
related back end.

3.3.7. OpenXR
OpenXR is an open, royalty-free standard for access to virtual reality platforms and devices.
XR is an umbrella term covering a wide span of different virtual practices like augmented
reality, virtual reality and mixed reality.
OpenVR is a software development kit and application programming interface developed by
Valve for supporting the SteamVR (HTC Vive) and other virtual reality headset devices. The
SteamVR platform uses it as the default application programming interface and runtime. It
serves as the interface between the VR hardware and software and is implemented by
SteamVR.
Note that as of Unity 2020.1 the OpenVR plugin will be deprecated within Unity and replaced
by the new standard called Unity XR.

3.3.8. Controller
During the course of the PRIME-VR2 project, three types of custom controller hardware will be
developed. All of which will be mapped and integrated into the VR ecosystem.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 31

3.3.9. Custom Input
Depending on the outcome of the various user profiles defined within the PRIME-VR2 project,
a multitude of sensors will be added to the controllers to measure a range of user input activity.

3.3.10. Input mapping
 Custom input will be mapped to existing hardware using Unity Input System v1.0, unless the
capabilities of the hardware is found insufficient, in which case the additional hardware will be
made available via a controller driver extension or replacement.

3.4. Requirements
This section describes system and environmental setup and requirements mandatory to be
able to use the SDK.

3.4.1. Supported devices
Valve Index
PRIME-VR2 custom controllers

3.4.2. Unity platform configuration
Table 3.4 provides an overview of the required Unity platform configuration. These will be
expanded with additional packages and plugins that will be used over the course of
development.

Unity Version 2019.1 - latest

API Compatibility Level .Net Standard 4.0

Scripting Backend Mono

Active Input Handling Input System Package

Table 3.4

3.4.3. Build target environment
The target environment is Windows 10.

3.4.4. Automatic Configuration
Settings that are mandatory for a proper functioning of the SDK will be presented through an
additional editor menu, allowing a quick setup for developers.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 32

3.5. Modules
The SDK currently defines four main modules:

• A Service module, which makes the server-side API accessible to developers and
wraps complex systems like user authentication and data validation.

• An Input module, which embeds all complexities considering the custom controller
connectivity states and input logic.

• A Game module, which provides building blocks for creating games.
• A UI module, which provides building blocks for creating an accessible user interface,

to enforce a consistent mechanism and interaction design that is default to the
PRIME-VR2 platform integrations.

The following list describes the functionality of each of the modules.

3.5.1. Primevr2_Service
- Establishing a server connection
- User Authentication
- Automatic sign in
- Retrieving and storing user profile data
- Retrieving and storing game progress related data
- Retrieving and storing game resulting statistics
- Data caching and synchronization
- Data serialization

3.5.2. Primevr2_Input
- Retrieving controller status
- Wrapping complex input signal algorithms
- Calibration
- Measuring pressure, velocity, speed, inertia

3.5.3. Primevr2_Game
- Exercise metrics	
- Analytics
- Achievements
- Usability Tools

3.5.4. Primevr2_UI
- Event pipeline for displaying data updates
- Handling user input
- Mock-up interface providing basic interaction guidelines

3.6. API functions

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 33

This section provides an overview of the available API calls within the Unity SDK.
Each submodule has their own set of calls. Due to work package related dependencies, I.e.
controller functionality and calibration, currently only the calls for the authentication process
have been defined. A full overview of the implementation will be made available after all
functionalities have been defined.

3.6.1. Service
Function name: public static string GetSDKVersion()
Functions: Get SDK version number
Parameter: none
Return value: SDK version number
Method of calling: Primevr2_UnitySDK.Service.GetSDKVersion()

3.6.2. Authentication
Handles user authentication and login.
Initial user login will take place in the Application Loader. Data will be stored inside Unities
PlayerPrefs. At the launch of the game we can automatically login the user with the same
credentials.

Function name: public static void LoginWithEmailAddress
Functions: Signs in an existing PRIMEVR2 user
Parameters: LoginWithEmailAddressRequest
 Action<LoginResult> resultCallback
 Action<LoginError> errorCallback
Return value: none
Method of calling: Primevr2_UnitySDK.Service.LoginWithEmailAdress()

Function name: public static void LogOut
Functions: Logs out an active user
Parameters: none
Return value: none
Method of calling: Primevr2_UnitySDK.Service.LogOut()

Function name: public static IsClientLoggedIn
Functions: Retrieves login state of user
Parameters: none
Return value: bool
Method of calling: Primevr2_UnitySDK.Service.IsClientLoggedIn()

Function name: public static ForgetAllCredentials()
Functions: Clears the Client SessionToken which allows this Client to call API calls requiring
login.
Parameters: none
Return value: none
Method of calling: Primevr2_UnitySDK.Service.ForgetAllCredentials()

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 34

3.7. Sample Scenes
After the implementation of described functionality, sample scenes will be made available as
a reference for future game implementations. A full list of sample scenes providing setup,
calibration details and mock-up gameplay, will be described here.

3.7.1. Sample Scene index
• Calibration
• Achievements Example	
• Analytics
• Exercise metrics
• Realtime assistance
• Other

3.8. Platform Loader
The Platform Loader is a desktop application that can be downloaded and installed as the main
application for the project. When a patient wants to launch a game, he will use this application
to login with his account, and select one of the games that have been assigned by a therapist
using the web portal. The application will give general information about each game and
manages the download and installation of each game.

When a game is launched using the Platform Loader a user session is created and will be
delegated to the games, so the games won’t require an additional login authentication. The
current functionality of the Platform Loader will only consist of managing and launching games.

3.9. Realtime Assistance
When a game is launched, it will provide a 2d dashboard on a connected desktop monitor.
This dashboard can be used to allow non-VR interactions with the game and its settings. A
caretaker or therapist can view what a patient is seeing in VR, or move their own flythrough
camera to get a good overview of what a patient is doing.
Using microphone input, a therapist can give directions to a patient that is wearing a headset.
The dashboards expose the game settings, which would solve problematic interactions with
the menu and setting from within VR.
The current feature does not provide networked communication and is focused solely as an
on-premise solution to a tethered headset.
The functionality of the dashboard can be extended to meet more active requirements, such
as world / game interaction, through ‘click and select’ mechanisms.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 35

3.10. Game Structure

3.10.1. Game
One of the Prime VR2 games installations, each having their own thematic 3d surrounding and
set of exercises. Each game implements the Unity SDK and will run as a separate installment.
example: ‘Greenhouse Gardening’

3.10.2. Environment
A thematic 3d environment in which a game is taking place. Most environments will have
multiple areas to explore, some will be focused on a single position.
example: ‘Greenhouse’

3.10.3. Exercise
Exercises are mini-games located within the game environments. They have a start, an ending
and a measured result. Exercises will focus on improving a specific condition of the patient,
isolating a specific muscle group or movement, or can be used as a platform to train exposure
or gain confidence in performing specific tasks. Note that in the context of the game
environment, an exercise is more than simply the training of a specific motion. They should be
fun and challenging, hence the term mini-game.
example: ‘Watering the plants’

3.10.4. Exercise Session
A single activity where a user starts, performs and completes a specific exercise. An exercise
usually consists of multiple sets and repetitions of the same tasks.

3.10.5. Game Session
A single gameplay session where a user starts a game, plays a various range of exercise
tasks, and closes the game.

3.10.6. Activity
Activity is the registration of both game and exercise sessions.
See platform implementation plan for more information.

3.11. Score System

3.11.1. Exercise Metrics
Exercise metrics is a set of data collected from exercises.
This data is used to measure the rehabilitative process of a patient.
After each exercise session, various motoric conditions will be rated in their own relative score
values. these values will then be stored and made visible on the web platform. The function
of these metrics is to provide insight into a patient’s progression. See a full list and description
of the dissected measurable components below.
● Accuracy

○ A patient’s capability to perform a task with precision.
● Force

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 36

○ A patient’s capability to apply a specific force to a motion.
● Pressure

○ A patient’s capability to apply a certain grip.
● Fluency of motion

○ A patient’s ability to make a motion gracefully without too much jitter.
● Range of motion (distance / angle)

○ A patient’s ability to reach the hand or rotate the wrist.
● Reaction time

○ How quick does a patient respond from the moment a command is given to the
moment the objective is completed.

● Speed of motion
○ The patient’s ability to move with speed.

● Relaxation
○ The patient’s ability to relax its muscle tension.

3.11.2. Score Calculation
A score is composed of both qualitative and quantitative measurements. The quantitative
measurements are derived from the number of completed sets and/or repetitions. The
qualitative measurements are derived from each exercise metric. Every exercise has an
internal setup to calculate the final score by giving weights to each metric. I.e. when the goal
is to water a plant, the range (angle) and fluency of motion would be the biggest determinants
for the final score.
The score is also adapted to the patient’s abilities to prevent a low starting score or a very slow
progressing score over time. I.e. when a patient’s ability is so limited that it can hardly rotate
the wrist, he/she should still get a fair score by reaching all the way to its calibrated limits.

3.11.3. User Calibration
To understand the patient’s limitations and capabilities, a short calibration process should be
designed to gain insight into the different exercise metric values at the current state of the
patient’s rehabilitation. I.e. by giving the simple task like moving the hand from one place to
another, we can determine most of the exercise metrics and suggest a compensational factor
to be applied to the patient's motions.

3.12. Leaderboards
A leaderboard will primarily be visible on the web platform. A leaderboard will display a global
score results surrounding specific exercises. A function of a leaderboard is to stimulate
competitiveness amongst players by giving them insight in how others are doing in the exercise
they are currently focused on.

3.13. Achievements
Achievements are unlockable rewards to mark certain progressive game events. The function
of achievements is to both give a player an idea of what can be achieved (visible but yet locked
achievements) and to rewards a player for something, whether it’s completing a set of

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 37

exercises or discovering a new area within the environment. Every game has their own set of
achievements.

3.14. Analytics
Anonymized analytics collects large data about the types of patients, the total amount of games
played etc., in order to track how the platform is being implemented and used.

3.15. Accessibility Tools (VR)
To cover a wide range of patients with different disabilities and motoric or visual limitations,
the following utilities could be developed as part of the SDK’s accessibility toolset. Each tool’s
specific settings could be adjusted at runtime by a caretaker/therapist.
● Smoothing out movements (dystonia)

○ This could be a smoothing operation to support patients with excessive motoric
disturbances in performing difficult tasks.

● Delayed or slowed down movements (dystonia)
● Over exaggerate range of movements (extending motoric limits)
● Magnification of objects of interest (visually impaired)
● Use of captions during spoken voices
● Gaze tracking mechanism to interact with UI (stroke, dystonia)
● Controlling font sizes. (visually impaired)

3.15.1. Motion Compensation
There are a number of ways the virtual representation of the patient’s arm and motion can be
used to support the completion of exercises or help the patient gain confidence in completing
tasks.
In one case, a patient’s motoric limitations are too severe to complete a motion like rotating
the wrist to rotate a watering can. By calibrating the maximum range of motion of the patient,
the rotation of the watering can be exaggerated in order to complete the task. In another case
the patient’s fluency of motion is so jittery, it can hardly perform the required motion, resulting
in a loss of confidence. This effect can be compensated by enabling a smoothing pass on the
patient’s motion. As there are multiple scenarios to be explored and tested in both functionality
and results, above stated mechanisms are not yet finalized and incorporated into the
development plan.
● Smoothing out movements (dystonia)

○ This could be a smoothing operation to support patients with excessive motoric
disturbances in performing difficult tasks.

● Delayed or slowed down movements (dystonia)
● Over exaggerate range of movements (extending motoric limits)

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 38

4 WEB PLATFORM

4.1. Introduction

The PRIME-VR2 Web Portal is a web application that coordinates the activity of hospital
supervisors, doctors and patients in order to achieve successful VR therapy outcomes.

The system consists of two main functional units:

● Website: A human-friendly user interface where users can interact with the system.

● Gameplay API: A machine-friendly API that games can use to query configuration
options and upload gameplay data.

Fig. 4.1. User Type Hierarchy

4.2. Architecture

Fig. 4.2. Prime-VR2 Web Portal architecture diagram

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 39

We designed our system with microservice architecture in mind. All out our service is running
as an independent container. For container orchestration we’re using Kubernetes, which
provides us both resiliency and flexibility in the operation tasks.

For authentication and authorization, we’re using our own authentication service to ensure
none of the services are accessible for non-authorized person.

Key components

• Web Portal – an Angular application which is the central hub for both patients and
therapists. They can manage and understand the metrics that are coming from the games. It
contains the login screen and all management screens, also the overviews. The users with the
right permissions can use the Portal to add and edit other users, create, edit and delete
hospitals and games. The end users can use the Web Portal to follow their progress and
analyze their performance in different exercises.

• Auth frontend – a strictly administrative UI to manage roles and permissions. Administrator
can use this special and secure UI to interact with the Auth service. Admins can manage users,
roles and permissions through this.

• Portal and game service – this is the main service which serves the Web Portal and also
provides an API to games to be able to send session date and access game details. The
games communicate with this API through the HTTP REST standard. The API endpoints are
secured with the use of JWT technology and firewall.

• File service – Basically this is the Prime VR2 blob storage. The users or the games can
upload files and it will be stored as object / blobs on a decentralized storage place. The UI or
the games are not interacting with the physical storage directly. The File service is a secured
abstraction level built on top of the physical storage to achieve custom business logics.

• Auth service – The whole user management is implemented in this component. It stores
the list of users with all the details. Using advanced industry standard solutions to securely
store passwords. The Auth service also managing the login / logout and the forgot password
processes. This is the central component who gives JWT tickets for the users if they are
successfully logged in. Later using this secure JWT the users are able to use different APIs if
they have the right permissions to do that.

• Database – A relational database (PostgreSQL) is used for the persistent data storage for
all of the services. This is the only component, which is not run in a component, as an industrial
standard in’s an independent database server, with daily backups.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 40

4.3. User Types

Fig. 4.2. User Type Hierarchy

As in D2.1 proposed as requirements, the platform supports four different user types that each
have a different set of security permissions - thereby they can access a different set of
functionalities and see different parts of the user interface.

Super Admin
Responsible for tasks concerning the entire portal – adding new Supervisors, Doctors and
Patients, and disabling/enabling them. They can access a read-only view of all patient data in
the system.

Supervisor
Responsible for managing a hospital in the system. They can create Doctors and Patients,
disable and enable them. They can access a read-only view of all patient data in their
respective hospital.

Doctor
Responsible for administering therapy to the patients. They can create new Patients, disable
and enable them, set which games are available to each of them and edit their configuration
options, and set personal goals for each game and user. They can add, edit and delete game
sessions and view the leaderboards for all games.

Patient
Can play games and review their progress. They can view leaderboards for each game they
are assigned.

4.3.1. Permissions
The following table lists all available operations in the system and whether different user types
can perform them.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 41

Some table headers have been abbreviated:
● SA = Super Admin
● SPV = Supervisor
● D = Doctor
● P = Patient

Operation SA SPV D P
List All Users ◉

List Users in Own Hospital

◉

List Own Patients

◉

Create Super Admin ◉

Create Supervisor ◉ ◉

Create Doctor ◉ ◉

Create Patient ◉ ◉ ◉

View Patient Overview for Any Patient ◉

View Patient Overview for Any Patient in
Own Hospital

◉

View Patient Overview for Own Patient

◉

View Own Patient Overview

◉

Edit Super Admin ◉

Edit Any Supervisor ◉

Edit Any Doctor ◉

Edit Any Patient ◉

Edit Any Supervisor in Own Hospital

◉

Edit Any Doctor in Own Hospital

◉

Edit Any Patient in Own Hospital

◉

Edit Own Patient

◉

Disable/Enable Super Admin ◉

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 42

Disable/Enable Any Supervisor ◉

Disable/Enable Any Doctor ◉

Disable/Enable Any Patient ◉

Disable/Enable Any Supervisor in Own
Hospital

◉

Disable/Enable Any Doctor in Own Hospital

◉

Disable/Enable Any Patient in Own Hospital

◉

Disable/Enable Own Patient

◉

Delete Super Admin ◉

Delete Any Supervisor ◉

Delete Any Doctor ◉

Delete Any Patient ◉

Delete Any Supervisor in Own Hospital

◉

Delete Any Doctor in Own Hospital

◉

Delete Any Patient in Own Hospital

◉

Delete Own Patient

◉

Edit Own Profile ◉ ◉ ◉ ◉

List Hospitals ◉

Create Hospital ◉

Edit Hospital ◉

Disable/Enable Hospital ◉

Edit Own Hospital Profile

◉

List Games ◉

Create Game ◉

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 43

Edit Game ◉

Disable/Enable Game Globally ◉

Disable/Enable Game for Patient

◉

Configure Game

◉

Set Personal Goal

◉

Create Session

◉

Edit Session

◉

Delete Session

◉

View Leaderboard ◉ ◉ ◉ ◉

Send Message to Own Patient

◉

Send Message to Own Doctor

◉

4.4. User Management

4.4.1. User List

Please find the information of user lists, user control, user profile, and login requests as
follows, based on the requirements D2.1.

The administrators, that is super admins, supervisors, and doctors should have the abilities
to manage the users on the system as following:

A sortable, filterable, paginated list of users in the system. By default:

● Super Admins see a list of all users in the system

● Supervisors see a list of all users in their respective hospital

● Doctors see a list of all Patients assigned to them

● Patients cannot access the list.

List items have the following fields:

● Email	

● User Type - Super Admin/Supervisor/Doctor/Patient	

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 44

● Hospital Name - empty for Super Admins	

● Full Name	

● Nickname - empty for everyone except patients

● Number of unread messages from this user - only for Doctors

Users can sort the list by email, hospital name, full name or nickname, in alphabetical or
reverse alphabetical order, by clicking on the corresponding list header field.

Users can filter the list by:

● Email - free text	

● User Type - select from list (not available to Doctors who can only see Patients):

○ Super Admin - option only available to Super Admins	
○ Supervisor	
○ Doctor	
○ Patient	

● Hospital Name - select from list; only available to Super Admins	

● Full Name - free text

● Nickname - free text

● Has Unread Messages - true/false

The following operations are available on the User List page:

● Create User

● Patient Details

● Edit User

● Disable/Enable User

● Delete User

● Open Message Thread View (for Doctors)

The next five sections describe these in detail. Message Thread View is described in the
Messaging section.

4.4.2. Create User

This is a page Super Admins, Supervisors and Doctors can use to create new Users.

Super Admins can create:

● Super Admins

● Supervisors

● Doctors

● Patients

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 45

Supervisors can create (only in the same hospital):

● Supervisors

● Doctors

● Patients

Doctors can create (only in the same hospital; assigned to themselves):

● Patients

When creating any user, the following fields must be specified:

● Email (must be of valid format and must not exist in the system)

● User Type

● Full Name (must have at least three non-whitespace characters)

Additionally, the Super Admin must select the Hospital when creating Supervisors, Doctors or
Patients. Supervisors and Doctors can only create users for their respective Hospitals.

When creating Patients, the user must select the Doctor they are assigned to. Supervisors can
only assign Patients to Doctors in their own Hospital. Patients created by Doctors are
automatically assigned to them.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 46

4.4.3. New User Flow

Fig 4.3. New User Flow

1. Newly created users get an email that contains a unique, single-use link. This link
expires in one week.

2. By clicking the link, they can access a web page where they can set a password for
themselves. The password must be confirmed by typing it again in a separate field to
prevent typos; the two fields must match for the registration process to continue. The
password must be at least 8 characters long.

3. After entering the code on the website, they are taken to the login page where can now
access the system by logging in.

4.4.4. Patient Overview
The Patient details page is available to Super Admins, Supervisors and Patients. It shows the
following basic data about a Patient:

● Email	
● Hospital Name
● Full Name	
● Nickname	

This page also shows game-specific data that will be discussed in a later section.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 47

4.4.5. Edit User
This page allows editing the following user profile fields:

● Email	
○ Free text	
○ Must be of valid format	

● Hospital	
○ Select from list	
○ Only for Supervisors, Doctors and Patients	
○ Only available to Super Admins	

● Assigned Doctor	
○ Select from list	
○ Only for Patients	
○ Only available to Super Admins and Supervisors	
○ Super Admins can only choose from Doctors in the selected Hospital	
○ Supervisors can only choose from Doctors in their own Hospital	

● Full Name	
○ Free text	
○ Must be at least 3 non-whitespace characters	

● Nickname	
○ Free text	
○ Must only contains letters, numbers and underscores	
○ Only for Patients	

The type of a user cannot be changed.

4.4.6. Disable/Enable User

This function allows users to disable another user.

Disabling a user means they can no longer log in to the system. Enabling them means
undoing this.

Super Admins can disable and enable:

● other Super Admins (not themselves)

● Supervisors

● Doctors and

● Patients.

Supervisors can disable and enable:

● other Supervisors in their own Hospital (not themselves)

● Doctors in their own Hospital and

● Patients in their own Hospital.

Doctors can disable and enable:

● Patients assigned to them.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 48

4.4.7. Delete User
According to EU regulations (colloquially, the “Right to be Forgotten”), a user of a software
system must be able to request the permanent removal of all of their data from that system.

Deleting a user will remove all of their associated data: their profile, Hospital, Doctor and
Game assignments, personal goals, high scores from leaderboards and their entire
gameplay history.

Super Admins can delete:

● other Super Admins (not themselves)

● Supervisors

● Doctors and

● Patients.

Supervisors can delete:

● other Supervisors in their own Hospital (not themselves)

● Doctors in their own Hospital and

● Patients in their own Hospital.

Doctors can delete:

● Patients assigned to them.

Users cannot delete themselves in order to prevent accidental data loss. They must request
the removal of their data on a communication channel inside or outside the system (by using
the built-in messaging function, emailing or calling another user who can delete them).

4.4.8. Edit Own User Profile
All users can access a page where they can edit their own:

● Email,	
● Full Name and	
● Password	

The password must be confirmed by typing it again in a separate field to prevent typos; the
two fields must match exactly. The password must be at least 8 characters long.

If the password fields are left empty, the user’s password remains unchanged; only the other
fields are updated.

Patients can also edit their Nickname.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 49

4.5. Login
A user can log in to the system by correctly entering their:

● Email

● Password

The login page also has a “Forgot your password?” link that points to the Forgotten Password
page.

If any of the above are incorrect, the user is presented with a generic “Invalid login data”
message. Due to security concerns, we cannot provide more detailed feedback on which of
the fields contain incorrect data.

On successful login, Super Admins, Supervisors and Doctors are redirected to the User List
page.

Patients are redirected to the Game Overview page.

4.5.1. First Login

Fig 4.4. Login sequence

On first login, after successfully entering their email and password, users are redirected to a
Profile Setup page where:

● All users must accept the terms and conditions by checking a checkbox.	

○ The document can be read by clicking on a link - it opens on a new browser
tab.	

○ If the user declines, a confirmation prompt appears: “Are you sure you want to
decline? This will delete your profile from the system.”	

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 50

○ On clicking “No”, the confirmation disappears.	
○ On clicking “Yes”, the user profile is deleted from the system and the browser

is redirected to the main page.	
● Patients must enter a Nickname.	

○ Free text	
○ Must only contains letters, numbers and underscores	
○ Must not exist in the system 	

After successfully completing the Profile Setup form, they are redirected to the page described
in the previous section.

4.5.2. Forgotten Password
Upon clicking the “Forgot your password?” link on the login page, users can enter their email
address in a text field and request a password reset link by clicking a button.

Due to security concerns, we cannot provide feedback to the user about the existence of the
email entered. If the email is mistyped or does not exist, sending the link will silently fail.

If the email address specified exists in the system, a unique, single-use link is sent to the user.
By clicking the link, they are presented with a page where they can set a new password for
themselves. The password must be confirmed by typing it again in a separate field to prevent
typos; the two fields must match for the registration process to continue. The password must
be at least 8 characters long.

4.6. Hospital Management

As D2.1 requires, the hospital management has to relate to how the individual hospitals
utilising the web platform will manage patient data. WP6 considered the requirements and
decided to implement it in the following way:

4.6.1. Hospital List
Only Super Admins can access this page.

The page displays a sortable, filterable, paginated list of Hospitals in the system. For each
Hospital, the following fields are shown:

● Hospital Name	
● Country	
● City	

Users can sort the list by hospital name, country and city, in alphabetical or reverse
alphabetical order, by clicking on the corresponding list header field.

Users can filter the list by:

● Hospital Name - free text	
● Country - select from list	
● City - select from list	

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 51

The following operations are available on the Hospital List page:

● Create Hospital	
● Manage Users	
● Edit Hospital	
● Disable/Enable Hospital	

Hospitals cannot be deleted.

The next four sections describe these operations in detail.

4.6.2. Create Hospital
Only Super Admins can access this page.

To create a Hospital, the Super Admin must specify the following:

● Hospital Name - free text; at least 3 non-whitespace characters	
● Country - select from list
● City - free text; at least 3 non-whitespace characters	
● Street Address - free text; at least 3 non-whitespace characters	
● Zip Code - free text; at least 2 non-whitespace characters	
● Contact Name - free text; at least 3 non-whitespace characters	
● Contact Email - free text; must be valid email address	
● Contact Phone - free text; at least 3 non-whitespace characters	

4.6.3. Manage Hospital Users
This is a link that points to the User List page, with the filter pre-set to the Hospital selected.

4.6.4. Edit Hospital
Only Super Admins can access this page. They can edit all attributes of a Hospital:

● Hospital Name - free text; at least 3 non-whitespace characters	
● Country - select from list	
● City - free text; at least 3 non-whitespace characters	
● Street Address - free text; at least 3 non-whitespace characters	
● Zip Code - free text; at least 2 non-whitespace characters	
● Contact Name - free text; at least 3 non-whitespace characters	
● Contact Email - free text; must be valid email address	
● Contact Phone - free text; at least 3 non-whitespace characters

4.6.5. Disable/Enable Hospital
Only Super Admins can access this function.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 52

Disabling a Hospital means that no user assigned to that Hospital can log in to the system.
Enabling a Hospital means undoing this.

4.6.6. Edit Own Hospital Profile
Only Supervisors can access this page. They can edit all attributes of a Hospital:

● Hospital Name - free text; at least 3 non-whitespace characters	
● Country - select from list	
● City - free text; at least 3 non-whitespace characters	
● Street Address - free text; at least 3 non-whitespace characters	
● Zip Code - free text; at least 2 non-whitespace characters	
● Contact Name - free text; at least 3 non-whitespace characters	
● Contact Email - free text; must be valid email address	
● Contact Phone - free text; at least 3 non-whitespace characters	

4.7. Games
Based on the requirements of the game management - how games should be accessed, edited,
and administered to patients and therapists, because this is a critical part of successful therapy
assignment -, we implemented the gameplay flow as follows:

Fig. 4.6 Gameplay Flow

4.7.1. Games List
This page is only available to Super Admins.

A sortable, filterable, paginated list of Games in the system. List items have the following
fields:

● Name

● Recommended gameplay time per day (if specified)

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 53

● Recommended sessions per week (if specified)

Users can sort the list by name, in alphabetical or reverse alphabetical order, by clicking on
the corresponding list header field.

Users can filter the list by name (free text).

The following operations are available on the Game List page:

● Create Game

● Edit Game

● Disable/Enable Game Globally

Games cannot be deleted.

The next three sections describe these in detail.

4.7.2. Create Game
 This page allows Super Admins to create new Games. The following fields must be
specified:

● Name	
○ Free text	
○ At least 3 non-whitespace characters	

● Icon	
○ PNG format	
○ 64✕64 pixels	

● Game preview image	
○ PNG format	

● Description	
○ Free text	
○ At least 3 non-whitespace characters	

● Recommended Uses	
○ Free text	
○ At least 3 non-whitespace characters	

● Intro Video	
○ MP4 video	
○ Max. 50 MB	

● Executable game file	
○ We don’t know the extension yet.	

● At least one of:	
○ Recommended gameplay time per day	

■ Number	
■ Between 1-1440	

○ Recommended sessions per week	
■ Number	
■ Between 1-35	

● Configuration Option Definition	

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 54

○ JSON Schema file (.schema.json extension) provided by the game developer	
■ See: https://json-schema.org/	
■ All object properties in the schema must have a title attribute (these

become form labels when the Doctor configures a Game)	
■ The file must contain well-formed JSON	
■ The file must conform to the core/validation JSON metaschema:

https://json-schema.org/draft/2019-09/schema	

Newly created games are automatically disabled. Only by enabling them will they become
available to non-superadmin users.

4.7.3. Edit Game
This page allows Super Admins to edit all game attributes listed in the previous section except
the configuration options. Due to technical constraints, if the option definition of a game
changes, a new Game must be created (e.g. by appending a version number ot its name).

4.7.4. Disable/Enable Game Globally
This function allows Super Admins to control the availability of Games across the entire
system. By disabling a Game, it is no longer listed as available for Supervisors and Doctors.
Patients can still review their gameplay history.

4.8. Patient Overview
It was highly important to create the patient overview where the data is organised, accessed
and displayed in the right way. As the different users should have access to different data, we
created the platforms as follows:

This page is available to Super Admins, Supervisors, Doctors and Patients. It gives an
overview of a Patient’s profile data (discussed earlier in the User Management section),
gameplay activity and goals achieved. Doctors can also access additional functions.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 55

Fig. 4.8 User Interface for the Patient Overview page

The page consists of the following sections:

● Profile Data

● List of Enabled Games

● Goal Review

● Activity Feed

4.8.1. List of Games
This is a list of globally enabled Games that are also enabled for the Patient. Only the icon and
the game name are shown. By clicking the icon, the Game Details Popup appears.

Doctors can see all globally enabled Games, regardless of whether they are enabled for the
Patient. Games that are disabled for the Patient have a saturated/grayed-out icon.

4.8.2. Goal Review
This section is a visualization of the goals achieved by the Patient. A dropdown list allows
selecting a single game or an aggregation of goal data from all games (an option titled “All
Games”). By default, “All Games” is selected. A calendar widget shows, by color coding and
other visual cues, whether the Patient achieved their goals for the days and weeks displayed.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 56

4.8.3. Activity Feed
This is a reverse chronological, lazy-loaded, infinitely-scrolling list of the user’s gameplay
sessions. The following data are displayed for each session:

● Game Name

● Game Icon (small size)

● Date and Time

● Duration

● Score

● “Daily goal achieved” badge, where applicable

● “Weekly goal achieved” badge, where applicable

By clicking a list item, the configuration options are displayed in a pop-up window.

Doctors can also access the following functions for each list item:

● Edit Session

● Delete Session

● Comment on Session (see the Messaging section)

And also, a global Create Session function. These will be discussed in detail in later sections.

4.8.4. Game Definition

For a new Game to be created in the system, the following data must be specified:

● Game Name (free text)	
● Icon (PNG file, 64×64 pixels)	
● Intro Video (MP4 file with H264 encoding, max. 50 MB)	
● Preview Image (PNG file, 1920×1080 pixels - "Full HD")	
● Game File (.exe, .zip, etc.)	
● Description (free text)	
● Recommended Uses (free text)	
● Recommended Goals	

○ At least one of the following:	
■ Number of minutes per day	
■ Number of sessions per day	

● Configuration Option Definition	
○ JSON Schema file (.schema.json extension) provided by the game developer	

■ See: https://json-schema.org/	
■ All object properties in the schema must have a title attribute (these

become form labels when the Doctor configures a Game)	
■ The file must contain well-formed JSON	

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 57

■ The file must conform to the core/validation JSON metaschema:
https://json-schema.org/draft/2019-09/schema	

● Achievement Definition	
○ JSON file	
○ Contains the list of all possible achievements	
○ Each achievement has:	

■ a machine-friendly symbolic name	
■ a human-readable display name	
■ an achievement group name (either a string or undefined)	

● this can be used to define multi-stage achievements	
■ the size of the achievement group	
■ a boolean indicating whether the achievement is visible while it is still

locked	
○ Example: 	

 { "name": "10-coins", "displayName": "Collected 10 Coins",
"group": "coins", "groupSize": 3, "visibleWhileLocked":
false }, { "name": "50-coins", "displayName": "Collected 50
Coins", "group": "coins", "groupSize": 3,
"visibleWhileLocked": false }, { "name": "100-coins",
"displayName": "Collected 100 Coins", "group": "coins",
"groupSize": 3, "visibleWhileLocked": false }, {
"name": "discovered-hidden-room", "displayName":
"Discovered Hidden Room" "visibleWhileLocked": true }

● Variable Definition	
○ JSON file	
○ Contains the list of all possible variables	
○ Used for Leaderboards and Charts	
○ Example: ["coins", "discoveredRoomNumber"]	

4.8.5. Create Session
Doctors can use this function to create new gameplay sessions for Patients. They must
specify:

● Game - select from list	
● Date and Time - must not be a future date	
● Duration - positive integer; minutes	
● Score - nonnegative integer	

4.8.6. Edit Session
Doctors can use this function to modify an existing gameplay session. All fields listed in the
previous section can be edited here; the same validation rules apply.

4.8.7. Delete Session
Doctors can use this function to delete a gameplay session. Deletion is permanent and
affects leaderboard position and the daily / weekly goals.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 58

4.8.8. Leaderboard
The Leaderboard is a page where Super Admins, Supervisors, Doctors and Patients can see
the top 10 daily, monthly and all-time scores for any globally enabled Game (Patients can only
see leaderboards for Games that are enabled for them).

The user can select from a list of Games and a list of time ranges (“Today”, “This Month”, “All
Time”). Based on their selection, the 10 best scores and the nicknames of the Patients who
have achieved them are displayed. By default, a placeholder screen is shown, the user must
select both options to see any data.

4.9. Messaging
The system provides a real-time messaging system that allows Doctors and Patients to
communicate effectively. Right now this is more a later development that is not needed in the
prototype phase but it is nice to have when the Prime VR2 will achieve it’s commercialized
phase. The Messaging feature is not going to be implemented now.

4.9.1. Message icon
The website header has an icon that represents a message (e.g. an envelope). A red dot
overlay appears over this icon if the user has any unread threads. Clicking this icon opens
the User List filtered by the “Has Unread Messages” option (for Doctors) or the Message
Thread View (for Patients).

The number of unread messages is not shown inside the indicator.

4.9.2. Message Thread View
This page displays a chat conversation between a Patient and their Doctor. Messages are
displayed in speech bubbles. The current user’s messages are aligned to the right, the other
user’s messages are aligned to the left. The current user can send a new message by
entering text into a text box on the bottom of the page and clicking the “Send” button next to
it, or pressing Enter.

The system does not support sending:

● Emoticons	
● Images	
● Videos	
● Any other media type except plain text	

Opening the Message Thread View marks the thread as read and makes the red dot
indicator disappear if there are no other unread threads.

4.9.3. Real-Time Delivery
A web socket connection is established between the server and the browser after a Doctor or
a Patient logs in. Incoming messages are received through the web socket which guarantees
near-instantaneous delivery. If the current page is the Message Thread View, the message is
displayed and the thread stays in the “read” state. If another page is active, the thread is
marked as “unread” and the red dot indicator appears. The web socket connection is
automatically disposed when the user closes the site.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 59

4.9.4. Commenting on Gameplay Sessions
Doctors can post comments on gameplay sessions by clicking the “Comment on Session”
button next to a session on the Patient Overview page. This:

● Redirects the Doctor’s browser to the Message Thread View for the Patient	
● Pre-fills the text box with the following text:	

○ “Commenting on your session: {game name} {session date}, {duration}
minutes, {score} points” and a newline character	

This way the Doctor can add their own comments to the message and send it by clicking
“Send” or delete it from the text box to discard it.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 60

4.10. Notifications	

When certain events occur in the system, users receive email notifications. These events,
the users affected and the data content of the messages are listed below.

Event Recipient Content

User Created The user that has been
created

Unique, single-use
registration link

Password Reset Requested The user that has requested
the password reset link

Unique, single-use password
reset link

Patient Assigned to Doctor The Patient that has been
assigned

The name of the Doctor

Patient Assigned to Doctor The Doctor the Patient has
been assigned to

The name of the Patient

Patient Assignment Deleted The Doctor the Patient is no
longer assigned to

The name of the Patient

Message Received The recipient of the message
(Doctor or Patient); only if not
currently on-line

The name of the sender and
the contents of the message

New Game Enabled for
Patient

The Patient the Game is
enabled for

The name of the game, the
name of the Doctor who
assigned it and the personal
goals set

Personal Goals Changed The Patient the goals are set
for

Name of the Doctor and the
new personal goals

Daily Personal Goal Met The Patient whose goal is met Name of the Game and the
description of the goal

Weekly Personal Goal Met The Patient whose goal is met Name of the Game and the
description of the goal

Game Disabled for Patient The Patient the Game is
disabled for

Name of the Doctor and the
Game

Game Enabled Globally All Super Admins,
Supervisors and Doctors

Name of the Game

Game Disabled Globally All Super Admins,
Supervisors and Doctors; all
Patients the Game is enabled
for

Name of the Game

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 61

5 GAMEPLAY API

5.1. Authentication
The API uses JWT (JSON Web Token - https://jwt.io/) based authentication.

● The client authenticates with a third-party server (to be specified later) and receives a

JWT - a cryptographically signed JSON object that contains the identity of the user.	
● The client includes this token in the Authorization header in all requests made to the

API in the following format: Authorization: Bearer {token}	
● The API service validates the signature to verify that the information in the token is

valid. After successful validation, it can assume that the identity data received is
correct.	

● The token has an expiration time that is stored in one of the JSON properties. After
this time, the client needs to request a new token, otherwise authentication with the
API will fail.	

5.2. Configuration endpoint
The response JSON object returned by the Configuration endpoint will be extended with a
new state property that contains the latest state the game posted to the Session endpoint. If
no previous state exists, null is returned.

{

“config”: // configuration option values as defined in the JSON
schema,

"state" : {} // the previously stored state

}

5.3. Session endpoint
The JSON object in the body of the Session endpoint POST request will be extended with a
new achiev

{
“patientId”: /* patient ID - string (UUID) */,
 “gameId”: /* game ID - string (UUID) */,
“startedAt”: /* start date and time - ISO date and time string */,
duration”: /* duration in minutes - positive integer */,
“score”: /* score - nonnegative integer */,
“sessionData”: /* custom JSON object, see below */,
"achievements": ["100-coins", "discovered-hidden-room"],
"variables": [{ name: "coins", value": 46 }]
"state": { /* custom game state object */ }
}

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 62

● The achievements array contains all achievements unlocked in the session posted.	
● State is a custom object where the game can store its current user-specific state in

order to be able to calculate future achievements.	

6 ACHIEVEMENTS

 In the requirements of D7.1, it was emphasized that, the rehabilitation can be more effective
(especially for sports participants), when the games are providing a competitive environment.
It is important to challenge the patients to achieve more and more on their healing progress.

 Visible and yet locked achievements can motivate the patient as well as give them rewards
and recognition for their keen efforts. Furthermore, doctors easily can see how their patients
are progressing, if the achievements are well described.

Fig. 6 Achievement Pop-up

Achievements are displayed for a specific User and Game in the Achievement Pop-up. This
window shows a list of:

● Unlocked achievements in descending order of the time of unlocking	
● Locked achievements for which the visibleWhileLocked property is set to true.

The visual style indicates that these achievements are not yet unlocked. They appear
after unlocked achievements and are sorted alphabetically.	

Achievements that belong to the same group are shown as a single item in this list. The
unlock time of such a grouped item is the latest unlock time in the group; this time is used
when ordering items.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 63

7 LEADERBOARDS AND CHARTS

Leaderboards help therapists to overview the progress of each patient from visualized data.

As in the requirements of D2.1 was described, the therapists can view the leaderboards for
all game. Detailed data is showed from exercises, gameplay scores, and the patient’s
achievements.
Measurements show the current status and the achieved progress also, the results of the
exercises and games are easy to manage and read. Another function of the leaderboard is to
stimulate competitiveness amongst players, so these data can be motivating for patients to
perform even more exercises.

Leaderboards and charts are calculated from the same data stream. The UI is custom-built
for each game as the number of games will be low enough to make building a completely
configurable system unnecessary.

Leaderboards and Charts will be built using variable values (key - value pairs) the game can
send with each session.

Supported chart types with examples:

Fig. 7a Line Chart

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 64

 	

Fig. 7b Bar Chart

	

Fig. 7c Pie Chart

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 65

Fig. 7d Radar Chart

NOTE: the above example images represent the visual style used in the application but
contain dummy data unrelated to the domain.

All 4 roles (Super Admin, Supervisor, Doctor and Patient) can view leaderboards on the web
portal. There are no global leaderboards (there is no meaningful way the data can be
aggregated), the user must always select a game first. Then they can choose which game-
specific board (variable) they want to see and select a time range (this week, this month, all-
time).

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 66

Fig. 7e Leaderboard Pop-up

All 4 roles (Super Admin, Supervisor, Doctor and Patient) can view charts on the web portal.
Charts are always user- and game-specific. Super Admins, Supervisors and Doctors can
open a User's charts for a specific game from the Game Details Popup. Patients have a
separate Chats menu item.

Fig. 7f Chart Pop-up

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 67

8 PERFORMANCE METRICS

WP6 recommended the initial KPIs to be used for games in the VRHAB-IT. The four-
performance metrics that will be used to benchmark each game developed during this project
will also be used to judge the quality of the games submitted by third-party developers on VR-
HABIT platform. These are:

1. Retention rate – in this metric we look for how long patients keep coming back to the
platform. There could be many reasons why patients walk-away from the platform so
this is the top-most important metric to look for on a daily basis. It is defined as a
percentage of all patients who come back after Day-1, Day-3, Day-7, Day-14 and Day-
30.

2. Number of daily sessions – Building on the retention rate, in this metric, we also look
for the number of sessions each player played per day. Please note that the target for
this metric might be different for each user for each different game and is hence set by
their therapist. This value could also be less than 1 if the prescription defines less than
1 session per day (e.g. 3 sessions per week)

3. Session duration - a session is the time from when the player starts playing to the
moment when the activity is suspended. This metric will give us a better understanding
of how players are doing when compared to traditional therapy methods and if the
games are interesting enough to keep the players engaged for a longer period of time.

4. Engagement score - the engagement score is another way of measuring the user
satisfaction. In this metric we’ll try and see what the players are doing while playing the
game. For instance, are they using the most basic feature only, are they exploring
around menus or environments to look for additional content and do they replay the
same game over and over again to get a better score? We define this metric in terms
of areas traversed with points given to each one according to the difficulty of finding
that particular place and summing the values up.

9 VALIDATION CRITERIA

D2.1 VR Games and Activities sub section ‘Skill learning, performance measurement and
Gameplay’ defines how each game evolves over time and how the difficulty is set in such a
way so as to remain challenging for VRHAB-IT users. In order to support those requirements,
the team is tracking some metrics to help understand the user behaviour and identify any
choke points within the games and activities.

Start, fail and completion metrics – We measure these values for any given game. For every
start event, we see whether the player achieved or failed their goals. This information will be
valuable to the game developers to help adjust difficulty as well as to therapists who might
adjust the targets for their patients.

At WP6, we have been discussing ways to validate each activity within the VR-HABIT platform.
This is traditionally done through play testing in focus groups but this has 2 drawbacks – it is
not accurate and it might not even be feasible in our domain due to the conditions of our
patients. The conclusion we came up with is that each activity will be validated with the same
conditions to understand how much it helps patients get better in their needs when compared
to traditional approaches. This is very important in order to develop trust within the community.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 68

To achieve this, we decided to build a flexible system that empowers the living labs to define
the expected outcomes by allowing them to fine tune properties for each given task at a global
level as well as at a personal level for each patient.

These properties include the following:

1. Difficulty – A float data type between 0 and 1 where 1 is the hardest. This is interpreted
differently for each game.

2. Session Duration – An integer data type that defines the target session length in
seconds.

3. Number of sessions – A float data type that defines the number of sessions a patient
should strive for in a week.

These data values are compared with the real values recorded from player activity to help
validate the real value for each given game.

10 CI/CD

To ensure code quality and make the daily DevOps tasks easier, the project is using both
continuous integration and continuous delivery.

Continuous Integration (CI) is a development practice where developers integrate code into a
shared repository frequently, preferably several times a day. Each integration can then be
verified by an automated build and automated tests. While automated testing is not strictly part
of CI it is typically implied.

Continuous Delivery (CD) is the ability to get changes of all types—including new features,
configuration changes, bug fixes and experiments—into production, or into the hands of users,
safely and quickly in a sustainable way.

The cloud build is connected to the Bitbucket repositories and after a successful build the
artifact is ready to be deployed as a container. In production system the CD step obviously will
be disabled.

During the prototype phase there is no need of a full fledged CI/CD process to be in place.
This will be detailed and implemented after the commercialization phase.

11 CONCLUSION

The Platform Implementation Plan has outlined all the details about the Web Portal, PrimeVR2
Unity SDK and the VR Ecosystem (Rehabilitation Games). It also defined the terminology and
coding standards to align the work between WP6 members.

The Web Portal, PrimeVR2 Unity SDK, and the Rehabilitation Games create an integrated
environment. Within this ecosystem, the Doctors and their Patients can work seamlessly to
achieve their rehabilitation goals. Because every data from the games are uploaded into the
Web Portal real-time, the analysis is much easier even remotely.

The system remains extendable in the future with new games and metrics. Later goals can be
to extend the system with multiplayer functions or third-party developers.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 69

Keep in mind in the implementation phase there can be slight changes in the execution. This
is mostly related to late information from other Work Packages or findings that were not
previously known.

The next step is to execute the plan and implement all components of the described
ecosystem.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 70

APPENDIX 1.

12 USER INTERFACE MOCK-UPS

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 71

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 72

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 73

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 74

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 75

APPENDIX 2.

13 CODING GUIDELINES

13.1. Introduction

These documents contain guidelines for writing consistent, lucid, enticing, modern C#.

If you take issue with anything here, please open a pull request with your recommended
changes and include an argument for and against their adoption; explain the benefits of your
proposed change, and also any drawbacks.

13.2. Guiding Principles
• Be consistent.
• Don’t rewrite existing code to follow this guide.
• Don’t violate a guideline without a good reason.
• A reason is good when you can convince a teammate, not just when you like it.
• Assume your reader knows C# and English.
• Prefer clarity to ‘performance’.
• Prefer clarity to .NET dogma.
• Write comments that people want to read, with correct spelling and grammar.

13.3. The Rundown
• Indent with tabs.
• Max line length is 100 columns.
• Use spaces and empty lines precisely.
• Braces generally go on their own lines.
• Never put a space before [.
• Always put a space before {.
• Always put a space before (except for method invocations or when following another (.

13.4. General Guidelines

13.4.1. File Layout

Layout your .cs files like this:

File Header

Using Directives

Namespace Declaration

 Type Declaration

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 76

 Constants
 Static Fields
 Static Auto-Properties
 Static Delegates
 Static Events
 Static Enums
 Static Constructors
 Static Complex Properties
 Static Methods
 Static Structs
 Static Interfaces
 Static Classes
 Fields
 Auto-Properties
 Delegates
 Events
 Enums
 Constructors
 Finalizers (Destructors)
 Complex Properties
 Methods
 Structs
 Interfaces
 Classes

Within each of these groups order by access:

public
internal
protected
private

An exception to this layout is manual properties with a backing field used exclusively via the
property; these members should occur in the file together in the properties section. If your
backing field is accessed anywhere other than inside the property definition, stick to normal
layout rules.

string name;
public string Name {
 get { return name; }
 set { name = value; }
}

13.4.2. using Directives

Group using directives by common prefix, with shorter namespaces coming before longer
ones, creating neat clusters of statements separated by single empty lines.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 77

Namespaces should be ordered in increasing order of platform specificity, with .NET
namespaces first, then library or component namespaces, then Xamarin namespaces, then
application namespaces:

// Beautiful:
using System;
using System.Linq;
using System.Collections.Generic;

using MyLib;
using MyLib.Extensions;

using MonoTouch.UIKit;
using MonoTouch.Foundation;

using MyApp;

// Disaster:
using MyLib.Extensions;
using MonoTouch.Foundation;
using System.Collections.Generic;
using System;
using System.Linq;
using MonoTouch.UIKit;
using MyLib;

Prune redundant namespaces aggressively.

13.4.3. Declaring Types

Leave an empty line between every type definition:

// Perfect.
namespace MyApp
{
 enum Direction { Left, Right }

 class ImportantThing
 {
 ...
 }
}

// Wrong - missing and empty line between type definitions.
namespace MyApp
{
 enum Direction { Left, Right }
 class ImportantThing

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 78

 {
 ...
 }
}

// Wrong - more than one empty line.
namespace MyApp
{
 enum Direction { Left, Right }

 class ImportantThing
 {
 ...
 }
}

Put a space before and after : when listing base classes and interfaces.

// Perfect.
class MyClass : BaseClass, IDoesThis
{
}

// Wrong.
class MyClass: BaseClass, IDoesThis
{
}

Enums

Simple enums may be defined on a single line:

enum Edge { Left, Right, Bottom, Top }

Larger enums should list entries on separate lines and always end in a comma:

enum StringSplitOptions
{
 None = 0,
 RemoveEmptyEntries = 1,
}

13.5. Member Declarations

Leave an empty line before every method, property, indexer, constructor, and destructor:

class Person
{
 string name;

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 79

 public Person(string name)
 {
 this.name = name;
 }
}

Automatic properties don’t need to be preceded by an empty line:

class Person
{
 string Name { get; set; }
 int Age { get; set; }

 ...
}

13.5.1. Methods
public async Task<string[]> Query<TDatabase>(User user, TDatabase database
, Role role = Role.Admin)
 : where TDatabase : IDatabase
{
}

13.5.2. Properties

Declare automatic properties on a single line with the exact spacing shown below:

// Perfect.
string Name { get; set; }

Simple properties may define get and set on a single line each, with get first:

// Perfect.
string Name {
 get { return name; }
 set { name = value; }
}

Also note the single spaces before and after {, and the space before }.

Complex properties go like this:

// Perfect.
string Name {
 get {
 return name;
 }
 set {
 name = value;

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 80

 }
}

13.5.3. Type Inference

Use it. Less typing is almost always better than more typing, with some important exceptions.

Use var when the type is repeated on the right-hand side of the assignment:

// Perfect!
var users = new Dictionary<UserId, User>();

// Bloated.
Dictionary<UserId, User> users = new Dictionary<UserId, User>();

Don’t use var for capturing the return type of a method or property when the type is not
evident:

// Horrendous.
var things = Interpret(data);

// Much better.
HashMap<Thing> things = Interpret(data);

// Even better.
var things = InterpretAs<Thing>(data);

Omit the type when using array initializers:

// Could be better:
database.UpdateUserIds(new int[] { 1, 2, 3 });

// Better:
database.UpdateUserIds(new [] { 1, 2, 3 });

13.5.4. Object and Collection Initializers

Use them.

For simple initializers, you may do a one-liner:

// Perfect.
var person = new Person("Vinny") { Age = 50 };

// Acceptable.
var person = new Person("Vinny") {
 Age = 50,
};

Omit the () when using parameterless constructors:

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 81

// Perfect.
var person = new Person { Name = "Bob", Age = 75 };

// Wrong.
var person = new Person() { Name = "Bob", Age = 75 };

In general, each expression should be on a separate line, and every line should end with a
comma ,:

// Very nice collection initializer.
var entries = new Dictionary<string, int> {
 { "key1", 1 },
 { "key2", 2 },
};

// Very nice object initializer.
var contact = new Person {
 Name = "David Siegel",
 SocialSecurityNumber = 123456789,
 Address = "1234 Montgomery Circle Drive East",
};

// Bad collection initializer – multiple entries on one line.
var entries = new Dictionary<string, int> {
 { "key1", 1 }, { "key2", 2 },
};

13.5.5. Indentation

switch statements have the case at the same indentation as the switch:

switch (x) {
case 'a':
 ...
case 'b':
 ...
}

13.5.6. Where to put spaces[1]

We prefer to put a space before an open parenthesis only in control flow statements, but not
in normal method/delegate/lambda calls, or expressions. This makes method invocations
stand out from simple logical groupings. For example, this is good:

// Flow control...
if (awesome) ...
foreach (var foo in foos) ...
while (hazMonkeys) ...

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 82

// Logical grouping...
var result = b * (4 + i);

// Method invocation.
Foo(database);
Debug.Assert(5 + (3 * 4) && "laws of math are failing me");

// Consider
A = result ?? (int) compute (foo (b + 1));

// At first glance it Looks very similar to:
A = result ?? (int) compute (foo) (b + 1);

// Whereas:
A = result ?? (int) compute(foo(b + 1));

// Looks more immediately distinct from
A = result ?? (int) compute(foo)(b + 1);

The reason for doing this is not completely arbitrary. This style makes control flow operators
stand out more, and makes expressions flow better. The function call operator binds very
tightly as a postfix operator. In some cases, such as when C# is embedded in Razor markup,
inserting a space before an opening parenthesis will cause compilation to fail.

[1] Adapted from http://llvm.org/docs/CodingStandards.html#spaces-before-parentheses

Do not put a space before the left angle bracket in a generic type:

// Perfect.
var scores = new List<int>();

// Incorrect.
var scores = new List <int>();

Do not put spaces inside parentheses, square brackets, or angle brackets:

// Wrong - spaces inside.
Initialize(database);
products[i];
new List< int >();

Separate type parameters to generic types by a space:

// Excellent.
var users = new Dictionary<UserId, User>();

// Worthless.
var users = new Dictionary<UserId,User>();

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 83

Put a space between the type and the identifier what casting:

// Great.
var person = (Person) sender;

// Bad.
var person = (Person)sender;

13.5.7. Where to put braces

Inside a code block, put the opening brace on the same line as the statement:

// Lovely.
if (you.Love(someone)) {
 someone.SetFree();
}

// Wrong.
if (you.Love(someone))
{
 someone.SetFree();
}

Omitting braces for single line if statements is fine, however braces are always acceptable:

// Lovely.
if (you.Like(it))
 it.PutOn(ring);

// Acceptable.
if (you.Like(it)) {
 it.PutOn(ring);
}

Very short statements may be one-liners, especially when the body is a return:

// Lovely.
if (condition) return;

// Acceptable, but a little complex for a one-liner.
if (people.All(p => p.IsAdmin)) return new AdminPage();

// Wrong - too complex for a single line:
if (people.Where(p => p.IsAdmin).Average(p => p.Age) > 21) return DrinkDis
penser.FireWater;

Always use braces with nested or multi-line conditions:

// Perfect.
if (a) {

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 84

 if (b) {
 code();
 }
}

// Acceptable.
if (a) {
 if (b)
 code();
}

// Wrong.
if (a)
 if (b)
 code ();

When defining a method, put the opening brace on its own line:

// Correct.
void LaunchRockets()
{
}

// Wrong.
void LaunchRockets() {
}

When defining a property, keep the opening brace on the same line:

// Perfect.
double AverageAge {
 get {
 return people.Average (p => p.Age);
 }
}

// Wrong.
double AverageAge
{
 get {
 return people.Average(p => p.Age);
 }
}

Notice how get keeps its brace on the same line.

For very small properties, you can compress things:

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 85

// Preferred.
int Property {
 get { return value; }
 set { x = value; }
}

// Acceptable.
int Property {
 get {
 return value;
 }
 set {
 x = value;
 }
}

Empty methods should have the body of code using two lines, in consistency with the rest:

// Good.
void EmptyMethod()
{
}

// These are wrong.
void EmptyMethod() {}

void EmptyMethod()
{}

Generic method type parameter constraints are on separate lines, one line per type
parameter, indented once:

static bool TryParse<TEnum>(string value, out TEnum result)
 where TEnum : struct
{
 ...
}

If statements with else clauses are formatted like this:

good:

if (dingus) {
 ...
} else {
 ...
}

bad:

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 86

if (dingus)
{
 ...
}
else
{
 ...
}

bad:

if (dingus) {
 ...
}
else {
 ...
}

Namespaces, types, and methods all put braces on their own line:

// Correct.
namespace MyApp
{

 class FluxCapacitor
 {
 ...
 }
}

// Wrong - opening braces are not on their own lines.
namespace MyApp {
 class FluxCapacitor {
 ...
 }
}

To summarize:

Statement Brace position
Namespace new line
Type new line
Methods new line
Constructors new line
Destructors new line
Properties same line
Control blocks (if, for…) same line

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 87

Anonymous types and methods same line

13.5.8. Long Argument Lists

When your argument list grows too long, split your method invocation across multiple lines,
with the first argument on a new line after the opening parenthesis of the method invocation,
the closing parenthesis of the invocation on its own line at the same indentation level as the
line with the opening parenthesis. This style works especially well for methods with named
parameters.

// Lovely.
Console.WriteLine(
 "Connect to {0} via {1} with extra data: {2} {3}",
 database.Address,
 database.ConnectionMethod.Description,
 data.FirstPart,
 data.SecondPart
);

It’s also acceptable to put multiple arguments on a single line when they belong together:

// Acceptable.
Console.WriteLine(
 "Connect to {0} via {1} with extra data: {2} {3}",
 database.Address,
 database.ConnectionMethod.Description,
 data.FirstPart, data.SecondPart
);

When chaining method calls, each method call in the chain should be on a separate line
indented once:

void M() {
 IEnumerable<int> items = Enumerable.Range(0, 100)
 .Select(e => e * 2);
}

Use single spaces in expressions liberally:

good:

// Good.
if (a + 5 > method(blah() + 4))

// Bad.
if (a+5>method(blah()+4))

13.5.9. Casing

Argument names should use the camel casing for identifiers, like this:

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 88

good:

// Good.
void Method(string myArgument)

// Bad.
void Method(string lpstrArgument)
void Method(string my_string)

13.5.10. Instance Fields

Don’t use m_ or _ as prefixes for instance fields. Just use normal parameter naming
conventions:

// Perfect.
class Person
{
 string name;
}

// Wrong.
class Person
{
 string m_name;
}

Don’t write private for private members, as this is the default visibility in C#:

// Perfect.
class Person
{
 string name;
}

// Wrong.
class Person
{
 private string name;
}

An exception to this rule is serializable classes. In this case, if we desire to have our
serialized data be compatible with Microsoft’s, we must use the same field name.

13.5.11. this

The use of “this.” as a prefix in code is discouraged, it is mostly redundant. In general, since
internal variables are lowercase and anything that becomes public starts with an uppercase
letter, there is no ambiguity between what the “Foo” and “foo” are. The first is a public
property or field, the second is internal property or field.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 89

Good:

class Foo
{
 int bar;

 void Update(int newValue)
 {
 bar = newValue;
 }

 void Clear()
 {
 Update();
 }
}

Bad:

class Foo
{
 int bar;

 void Update(int newValue)
 {
 this.bar = newValue;
 }

 void Clear()
 {
 this.Update();
 }
}

An exception is made for this when the parameter name is the same as an instance
variable, this happens sometimes in constructors or if naming is difficult:

Good:

class Message
{
 char text;

 public Message(string text)
 {
 this.text = text;
 }
}

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 90

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 91

14 CODE COMMENTING GUIDELINES

14.1. Simple Comments

Comments begin with // followed by a single space, use sentence casing, and exhibit proper
spelling and grammar.

// Great:
// Verify that the client and server states are consistent.

// Bad - missing space:
//Verify that the client and server states are consistent.

// Bad - not a sentence:
// verify client server states

If your comment just paraphrases code, remove it:

// Bad
// Makes the window key and orders it front.
window.MakeKeyAndOrderFront ();

14.2. Multiline comments

Long comments tend to grow from smaller ones, so it’s simpler to always use // than to
switch to /* ... */ when a comment becomes “long”.

// Good:

// Sartorial leggings ennui before they sold out banjo, lo-fi Truffaut
// Shoreditch sustainable Godard skateboard next level iPhone. Locavore to
usled
// meh fingerstache DIY church-key keytar, Vice pug quinoa seitan. Blog ph
oto
// booth Pinterest letterpress kogi leggings aesthetic irony.

// Bad:

/*
 * Sartorial leggings ennui before they sold out banjo, lo-fi Truffaut
 * Shoreditch sustainable Godard skateboard next level iPhone. Locavore to
usled
 * meh fingerstache DIY church-key keytar, Vice pug quinoa seitan. Blog ph
oto
 * booth Pinterest letterpress kogi leggings aesthetic irony.
 */

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 92

14.3. Commenting Out Code

The only recommended use of /* ... */-style comments is for commenting out code.
Please do not comment out multiple lines of code with //.

// Good:

/*
for (int i = 0; i < int.MaxValue; i++)
 Console.WriteLine (i);
*/

// Bad:

// for (int i = 0; i < int.MaxValue; i++)
// Console.WriteLine (i);

You should avoid commenting out code anyway, preferring version control or other methods.

15 NAMING GUIDELINES

Object Name Notation Length Plural Prefix Suffix Abbreviation
Char
Mask Underscores

Class name PascalCase 128 No No Yes No [A-z][0-9] No

Constructor
name

PascalCase 128 No No Yes No [A-z][0-9] No

Method name PascalCase 128 Yes No No No [A-z][0-9] No

Method
arguments

camelCase 128 Yes No No Yes [A-z][0-9] No

Local variables camelCase 50 Yes No No Yes [A-z][0-9] No

Constants name PascalCase 50 No No No No [A-z][0-9] No
Field name camelCase 50 Yes No No Yes [A-z][0-9] Yes

Properties name PascalCase 50 Yes No No Yes [A-z][0-9] No
Delegate name PascalCase 128 No No Yes Yes [A-z] No

Enum type name PascalCase 128 Yes No No No [A-z] No

1. Do use PascalCasing for class names and method names:
public class ClientActivity
{
 public void ClearStatistics()
 {
 //...
 }
 public void CalculateStatistics()
 {
 //...

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 93

 }
}

Why: consistent with the Microsoft’s .NET Framework and easy to read.

2. Do use camelCasing for method arguments and local variables:
public class UserLog
{
 public void Add(LogEvent logEvent)
 {
 int itemCount = logEvent.Items.Count;
 // ...
 }
}

Why: consistent with the Microsoft’s .NET Framework and easy to read.

3. Do not use Hungarian notation or any other type identification in identifiers
// Correct
int counter;
string name;
// Avoid
int iCounter;
string strName;

Why: consistent with the Microsoft’s .NET Framework and Visual Studio IDE makes
determining types very easy (via tooltips). In general you want to avoid type indicators
in any identifier.

4. Do not use Screaming Caps for constants or readonly variables:
// Correct
public const string ShippingType = "DropShip";
// Avoid
public const string SHIPPINGTYPE = "DropShip";

Why: consistent with the Microsoft’s .NET Framework. Caps grab too much attention.

5. Use meaningful names for variables. The following example uses seattleCustomers for
customers who are located in Seattle:
var seattleCustomers = from customer in customers
 where customer.City == "Seattle"
 select customer.Name;

Why: consistent with the Microsoft’s .NET Framework and easy to read.

6. Avoid using Abbreviations. Exceptions: abbreviations commonly used as names, such as Id,
Xml, Ftp, Uri.
// Correct
UserGroup userGroup;
Assignment employeeAssignment;

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 94

// Avoid
UserGroup usrGrp;
Assignment empAssignment;
// Exceptions
CustomerId customerId;
XmlDocument xmlDocument;
FtpHelper ftpHelper;
UriPart uriPart;

Why: consistent with the Microsoft’s .NET Framework and prevents inconsistent
abbreviations.

7. Do use PascalCasing for abbreviations 3 characters or more (2 chars are both uppercase):
HtmlHelper htmlHelper;
FtpTransfer ftpTransfer;
UIControl uiControl;

Why: consistent with the Microsoft’s .NET Framework. Caps would grab visually too
much attention.

8. Do not use Underscores in identifiers. Exception: you can prefix private fields with an
underscore:
// Correct
public DateTime clientAppointment;
public TimeSpan timeLeft;
// Avoid
public DateTime client_Appointment;
public TimeSpan time_Left;
// Exception (Class field)
private DateTime _registrationDate;

Why: consistent with the Microsoft’s .NET Framework and makes code more natural to
read (without ‘slur’). Also avoids underline stress (inability to see underline).

9. Do use predefined type names (C# aliases) like int, float, string for local, parameter
and member declarations. Do use .NET Framework names like Int32, Single, String when
accessing the type’s static members like Int32.TryParse or String.Join.
// Correct
string firstName;
int lastIndex;
bool isSaved;
string commaSeparatedNames = String.Join(", ", names);
int index = Int32.Parse(input);
// Avoid
String firstName;
Int32 lastIndex;
Boolean isSaved;

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 95

string commaSeparatedNames = string.Join(", ", names);
int index = int.Parse(input);

Why: consistent with the Microsoft’s .NET Framework and makes code more natural to read.

10. Do use implicit type var for local variable declarations. Exception: primitive types (int,
string, double, etc) use predefined names.
var stream = File.Create(path);
var customers = new Dictionary();
// Exceptions
int index = 100;
string timeSheet;
bool isCompleted;

Why: removes clutter, particularly with complex generic types. Type is easily detected
with Visual Studio tooltips.

11. Do use noun or noun phrases to name a class.
public class Employee
{
}
public class BusinessLocation
{
}
public class DocumentCollection
{
}

Why: consistent with the Microsoft’s .NET Framework and easy to remember.

12. Do prefix interfaces with the letter I. Interface names are noun (phrases) or adjectives.
public interface IShape
{
}
public interface IShapeCollection
{
}
public interface IGroupable
{
}

Why: consistent with the Microsoft’s .NET Framework.

13. Do name source files according to their main classes. Exception: file names with partial
classes reflect their source or purpose, e.g. designer, generated, etc.
// Located in Task.cs
public partial class Task
{
}

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 96

// Located in Task.generated.cs
public partial class Task
{
}

Why: consistent with the Microsoft practices. Files are alphabetically sorted and
partial classes remain adjacent.

14. Do organize namespaces with a clearly defined structure:
// Examples
namespace Company.Product.Module.SubModule
{
}
namespace Product.Module.Component
{
}
namespace Product.Layer.Module.Group
{
}

Why: consistent with the Microsoft’s .NET Framework. Maintains good organization of
your code base.

15. Do vertically align curly brackets:
// Correct
class Program
{
 static void Main(string[] args)
 {
 //...
 }
}

Why: Microsoft has a different standard, but developers have overwhelmingly
preferred vertically aligned brackets.

16. Do declare all member variables at the top of a class, with static variables at the very top.
// Correct
public class Account
{
 public static string BankName;
 public static decimal Reserves;
 public string Number { get; set; }
 public DateTime DateOpened { get; set; }
 public DateTime DateClosed { get; set; }
 public decimal Balance { get; set; }
 // Constructor
 public Account()
 {

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 97

 // ...
 }
}

Why: generally accepted practice that prevents the need to hunt for variable
declarations.

17. Do use singular names for enums. Exception: bit field enums.
// Correct
public enum Color
{
 Red,
 Green,
 Blue,
 Yellow,
 Magenta,
 Cyan
}
// Exception
[Flags]
public enum Dockings
{
 None = 0,
 Top = 1,
 Right = 2,
 Bottom = 4,
 Left = 8
}

Why: consistent with the Microsoft’s .NET Framework and makes the code more
natural to read. Plural flags because enum can hold multiple values (using bitwise
‘OR’).

18. Do not explicitly specify a type of an enum or values of enums (except bit fields):
// Don't
public enum Direction : long
{
 North = 1,
 East = 2,
 South = 3,
 West = 4
}
// Correct
public enum Direction
{
 North,
 East,
 South,

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 98

 West
}

Why: can create confusion when relying on actual types and values.

19. Do not use an “Enum” suffix in enum type names:
// Don't
public enum CoinEnum
{
 Penny,
 Nickel,
 Dime,
 Quarter,
 Dollar
}
// Correct
public enum Coin
{
 Penny,
 Nickel,
 Dime,
 Quarter,
 Dollar
}

Why: consistent with the Microsoft’s .NET Framework and consistent with prior rule of
no type indicators in identifiers.

20. Do not use “Flag” or “Flags” suffixes in enum type names:
// Don't
[Flags]
public enum DockingsFlags
{
 None = 0,
 Top = 1,
 Right = 2,
 Bottom = 4,
 Left = 8
}
// Correct
[Flags]
public enum Dockings
{
 None = 0,
 Top = 1,
 Right = 2,
 Bottom = 4,

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 99

 Left = 8
}

Why: consistent with the Microsoft’s .NET Framework and consistent with prior rule of
no type indicators in identifiers.

21. Do use suffix EventArgs at creation of the new classes comprising the information on
event:
// Correct
public class BarcodeReadEventArgs : System.EventArgs
{
}

Why: consistent with the Microsoft’s .NET Framework and easy to read.

22. Do name event handlers (delegates used as types of events) with the “EventHandler”
suffix, as shown in the following example:
public delegate void ReadBarcodeEventHandler(object sender, ReadBarcodeEve
ntArgs e);

Why: consistent with the Microsoft’s .NET Framework and easy to read.

23. Do not create names of parameters in methods (or constructors) which differ only by the
register:
// Avoid
private void MyFunction(string name, string Name)
{
 //...
}

Why: consistent with the Microsoft’s .NET Framework and easy to read, and also
excludes possibility of occurrence of conflict situations.

24. DO use two parameters named sender and e in event handlers. The sender parameter
represents the object that raised the event. The sender parameter is typically of type object,
even if it is possible to employ a more specific type.
public void ReadBarcodeEventHandler(object sender, ReadBarcodeEventArgs e)
{
 //...
}

Why: consistent with the Microsoft’s .NET Framework

Why: consistent with the Microsoft’s .NET Framework and consistent with prior rule of
no type indicators in identifiers.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 100

25. Do use suffix Exception at creation of the new classes comprising the information on
exception:
// Correct
public class BarcodeReadException : System.Exception
{
}

Why: consistent with the Microsoft’s .NET Framework and easy to read.

26. Do use suffix Any, Is, Have or similar keywords for boolean identifier :
// Correct
public static bool IsNullOrEmpty(string value) {
 return (value == null || value.Length == 0);
}

16 LAMBDAS

Lambdas are written with a single space before and after the =>:

// Great.
Func<int, int> square = i => i * i;

// Terrible.
Func<int, int> square = i=>i * i;

If your lambda takes a single argument, omit the parentheses around the argument list:

// Great!
var admins = Users.Select (user => user.IsAdministrator);

// Silly.
var admins = Users.Select ((user) => user.IsAdministrator);

Whenever possible, omit types from lambda argument lists, and use simple names:

// Great:
list.OnScroll += (sender, e) => {
 ...
};

// Passé:
list.OnScroll += (object sender, EventArgs e) => {
 ...
};

// No! Parameter name is needlessly complex:
sqlDatabaseAdaptors.Select (sqlDatabaseAdaptor => sqlDatabaseAdaptor.Id);

// Much better. We have enough context from the larger identifier to know

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 101

what 'adaptor' is:
sqlDatabaseAdaptors.Select (adaptor => adaptor.Id);

When the body of a lambda is a simple statement or expression, don’t use a block:

// Excellent!
var averageSalary = employees.Average (employee => employee.Salary);

// Inconceivable!
var averageSalary = employees.Average (employee => { return employee.Salar
y; });

When the body of the lambda is a block, put the opening brace on the same line as the =>,
indent the body of the block, and close the block at the same level of indentation as the line
containing the opening brace:

// Ideal:
people.ForEach (person => {
 person.BrushTeeth ();
 person.CallMom ();
 person.RegisterToVote ();
});

// No! Improperly positioned opening brace:
people.ForEach (person =>
{
 person.BrushTeeth ();
 person.CallMom ();
 person.RegisterToVote ();
});

// No! Improperly positioned closing brace:
people.ForEach (person => {
 person.BrushTeeth ();
 person.CallMom ();
 person.RegisterToVote ();
 }
);

// No! Bad indentation:
people.ForEach (person => { person.BrushTeeth ();
 person.CallMom ();
 person.RegisterToVote ();
 });

Always prefer lambdas, Func<>, and Action<> types to delegate. The only recommended
use of delegate is when the body of your anonymous method doesn’t reference any of its
arguments:

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 102

thing.EventWithSenderAndEventArgs += delegate {
 Console.WriteLine ("EventWithSenderAndEventArgs raised.");
};

It is acceptable to use single-character argument names in lambdas if the receiver is an
IEnumerable and is named in such a way as to make the lambda argument obvious, and the
lambda argument name is the first character of the receiver’s identifier:

// Acceptable:
var averageSalary = employees.Average (e => e.Salary);

// Acceptable:
var averageSalary = employees.Average (employee => employee.Salary);

// Wrong - parameter name doesn't correspond to collection name:
var averageSalary = employees.Average (x => x.Salary);

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 103

17 COMMIT MESSAGE CONVENTIONS

These rules are adopted from the AngularJS commit conventions.

17.1. Goals
• allow generating CHANGELOG.md by script
• allow ignoring commits by git bisect (not important commits like formatting)
• provide better information when browsing the history

17.2. Generating CHANGELOG.md

We use these three sections in changelog: new features, bug fixes, breaking changes. This
list could be generated by script when doing a release. Along with links to related commits.
Of course you can edit this change log before actual release, but it could generate the
skeleton.

List of all subjects (first lines in commit message) since last release:

git log <last tag> HEAD --pretty=format:%s

New features in this release

git log <last release> HEAD --grep feature

17.2.1. Recognizing unimportant commits

These are formatting changes (adding/removing spaces/empty lines, indentation), missing
semi colons, comments. So when you are looking for some change, you can ignore these
commits - no logic change inside this commit.

When bisecting, you can ignore these by:

git bisect skip $(git rev-list --grep irrelevant <good place> HEAD)

17.2.2. Provide more information when browsing the history

This would add kinda “context” information. Look at these messages (taken from last few
angular’s commits): * Fix small typo in docs widget (tutorial instructions) * Fix test for
scenario.Application - should remove old iframe * docs - various doc fixes * docs - stripping
extra new lines * Replaced double line break with single when text is fetched from Google *
Added support for properties in documentation

All of these messages try to specify where is the change. But they don’t share any
convention…

Look at these messages: * fix comment stripping * fixing broken links * Bit of refactoring *
Check whether links do exist and throw exception * Fix sitemap include (to work on case
sensitive linux)

Are you able to guess what’s inside ? These messages miss place specification… So maybe
something like parts of the code: docs, docs-parser, compiler, scenario-runner, …

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 104

I know, you can find this information by checking which files had been changed, but that’s
slow. And when looking in git history I can see all of us tries to specify the place, only missing
the convention.

17.3. Format of the commit message

<type>(<scope>): <subject>
<BLANK LINE>
<body>
<BLANK LINE>
<footer>

Any line of the commit message cannot be longer 100 characters! This allows the message
to be easier to read on github as well as in various git tools.

17.3.1. Subject line

Subject line contains succinct description of the change.

Allowed <type>
• feat (feature)
• fix (bug fix)
• docs (documentation)
• style (formatting, missing semi colons, …)
• refactor
• test (when adding missing tests)
• chore (maintain)
Allowed <scope>

Scope could be anything specifying place of the commit change. For example $location,
$browser, $compile, $rootScope, ngHref, ngClick, ngView, etc…

<subject> text
• use imperative, present tense: “change” not “changed” nor “changes”
• don’t capitalize first letter
• no dot (.) at the end

17.3.2. Message body
• just as in use imperative, present tense: “change” not “changed” nor “changes”
• includes motivation for the change and contrasts with previous behavior

http://365git.tumblr.com/post/3308646748/writing-git-commit-messages
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 105

17.3.3. Message footer
Breaking changes

All breaking changes have to be mentioned in footer with the description of the change,
justification and migration notes

BREAKING CHANGE: isolate scope bindings definition has changed and
 the inject option for the directive controller injection was removed.

 To migrate the code follow the example below:

 Before:

 scope: {
 myAttr: 'attribute',
 myBind: 'bind',
 myExpression: 'expression',
 myEval: 'evaluate',
 myAccessor: 'accessor'
 }

 After:

 scope: {
 myAttr: '@',
 myBind: '@',
 myExpression: '&',
 // myEval - usually not useful, but in cases where the expression is
 assignable, you can use '='
 myAccessor: '=' // in directive's template change myAccessor() to my
Accessor
 }

 The removed `inject` wasn't generaly useful for directives so there sh
ould be no code using it.

Referencing issues

Closed bugs should be listed on a separate line in the footer prefixed with “Closes” keyword
like this:

Closes #234

or in case of multiple issues:

Closes #123, #245, #992

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 106

17.4. Examples
feat($browser): onUrlChange event (popstate/hashchange/polling)

Added new event to $browser:
- forward popstate event if available
- forward hashchange event if popstate not available
- do polling when neither popstate nor hashchange available

Breaks $browser.onHashChange, which was removed (use onUrlChange instead)

fix($compile): couple of unit tests for IE9

Older IEs serialize html uppercased, but IE9 does not...
Would be better to expect case insensitive, unfortunately jasmine does
not allow to user regexps for throw expectations.

Closes #392
Breaks foo.bar api, foo.baz should be used instead

feat(directive): ng:disabled, ng:checked, ng:multiple, ng:readonly, ng:sel
ected

New directives for proper binding these attributes in older browsers (IE).
Added coresponding description, live examples and e2e tests.

Closes #351

style($location): add couple of missing semi colons

docs(guide): updated fixed docs from Google Docs

Couple of typos fixed:
- indentation
- batchLogbatchLog -> batchLog
- start periodic checking
- missing brace

feat($compile): simplify isolate scope bindings

Changed the isolate scope binding options to:
 - @attr - attribute binding (including interpolation)
 - =model - by-directional model binding
 - &expr - expression execution binding

This change simplifies the terminology as well as
number of choices available to the developer. It
also supports local name aliasing from the parent.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 107

BREAKING CHANGE: isolate scope bindings definition has changed and
the inject option for the directive controller injection was removed.

To migrate the code follow the example below:

Before:

scope: {
 myAttr: 'attribute',
 myBind: 'bind',
 myExpression: 'expression',
 myEval: 'evaluate',
 myAccessor: 'accessor'
}

After:

scope: {
 myAttr: '@',
 myBind: '@',
 myExpression: '&',
 // myEval - usually not useful, but in cases where the expression is ass
ignable, you can use '='
 myAccessor: '=' // in directive's template change myAccessor() to myAcce
ssor
}
The removed `inject` wasn't generally useful for directives so there shoul
d be no code using it.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 108

APPENDIX 3.

ENVIRONMENTS CHECKLIST

Please use the below template to ensure cohesion and consistency across all Environment
definition documents.

Visual

- What does the player see around him/her?
- What object(s) can the player interact with
- What object(s) cannot the player interact with

- Pick up
- Aim
- Cut/Trim
- Put down

- How big is the environment?
- Define layout of the environment
- Define reasons for each of the above
- Can the environment support more than 1 person? (That is: someone to assist

player)
- How could stress impact the patient in the game? How will it be monitored?
- How can the environments be inclusive?

- Use captions?
- How can it be inclusive for people with vision impairment? Colour

arrangements in settings?
- How are colorblind people going to see it? Include different color

modes?
- Use settings to customize the light/dark environment for each patient?
- Reference

Audio

- Define background sounds
- Define sound effects
- Define character sounds
- Define movement sounds
- Define sound made by the interaction between player and object
- Define objects sounds
- Describe why these sounds are important in these cases
- How can the environment's sounds be inclusive?

- Guided instructions
- Description of sound events

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 109

- Illustrated instructions

Physical Feedback

- What feedback can be given from the controller to help the patient?

Patient-centric Analysis
Questions related to movement and player for sport, stroke and dystonia patients.

Case 1: Sport injuries (elbow, wrist, hand)
This kind of patient can move around, the focus of the injuries is the arm, and they need to
exercise it. This kind of patient is the least game constrained when it comes to in-game physical
actions.

Case 2: Stroke patients (brain injury)
Patient has lost the connection to the brain-muscle parts of the body, usually half of it is
“frozen”. Thanks to exercise they can partially regain this connection; the majority of the
patients are elderly people with little mobility. A game that has one direction or that allows to
move their heads (max) is required.

Case 3: Dystonia (muscle problem)
These kinds of patients have little control over their movements, and they require a simple
environment where they can focus on one simple task.

For each case type consider these questions:

1. Can you move?
2. Do you play standing up or sitting down?
3. What movements do you need to do?
4. What parts of the body do you need to play? (Interaction necessities)
5. Do you need one or two hands?
6. How is the player represented in this environment?
7. How is workload on the body assessed?
8. What is the relationship between a patient's movements and the controller?
9. Will people with serious movement impairment (such as they need to lay

down) be handled?

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 110

APPENDIX 4

PRIMEVR2 ENVIRONMENTS

In this document we describe a total of 10 potential VR environments which we deem suitable
for the PrimeVR-2 rehabilitation platform. For each of these environments we outline the
following aspects:

• Visuals: This section establishes a theme and sets the scene for various objects and
other virtual entities around the Player. These include static environment objects as
well as interactive props. Each layout is designed to provide a space where players
can feel safe, in-control while reducing unnecessary movement which can be
challenging considering the spectrum of patients that will inhabit such space.
Environments range from common day-to-day locales to fictional ones as we believe it
gives us greater flexibility to reach a larger number of patients.

• Modality: Provides a definition on how the environments interface with the various
activity stations at play and for each it lists how the patient will be positioned to play.
Given the physical impairments of some of the patient classes we have opted where
possible to support the sitting down position. This will give us the possibility of re-using
the same environment across the whole spectrum of patients in VRHAB-IT.

• Assistance: Patients may be unable to perform specific tasks so for this reason we
have listed several possibilities within the game space of how these tasks can be still
be overcome with the assistance of a third-party.

• Social: Different activities provide different social interaction potential. In this section
we outline any potential ways in which the patient, his actions or even his creations can
be used to interact socially with other players.

• Supported Activities: Most importantly in this section we give a sample of the
activities that can be performed by the patient to drive the gameplay. Here we define
each activity while clearly outlining how the patient is supposed to interact it and thus

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 111

establishing the requirements for the custom controller. These activities together with
the aspects are designed to engage the patient in a relaxing, yet challenging,
environment to drive the rehabilitation process.

1. GARDEN/ GREENHOUSE ENVIRONMENT

Controller
Requirements
/ Activity

Plant
Potting Tools Containe

rs
Other
Tools

Storage
Handling/T

ransport

Note
Taking

Finger
Tracking

Palm
Open/Close

Wrist
Movement

Elbow
Movement

Wrist
Resistance

Elbow
Resistance

 Required Nice to have

Table: Controller Requirement Matrix

A garden or a greenhouse environment is an all-rounder for most patients. The aim is
to create a familiar, relaxing and stimulating environment that could change according
to the players' action and does not bore them, making them come back more often.
For example, the player could plant seeds and come back the next session to see them
germinate and have a sprout. The weather and sound could also change according to
the session even though this has no impact on the player’s actions. It is also for this
reason that we feel a roofed Greenhouse is preferred in this case. Gardening in VR
can be a good tool to cheat the personal mental barriers of the brain for performing
activities. It will create an artificial environment and show the patient a different set up
than the hospital. The enthusiasm of the patient can push the patient towards a barrier
free performance of actions which are targeted by the therapist.

Patients tend to be in a very fragile state after a stroke therefore offering them a familiar
environment will facilitate their getting used to the VR environment. The garden is a
small typical outdoor place surrounded by a fence/brick wall and with a lot of green

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 112

and props (such as fountains and other decorative items). On the other hand, the
greenhouse is an indoor environment with a lot of potted plants and props.

In this environment, a carer can assist the player with some of the activities that take
place. We will explain the assistance functions later this document.

Areas challenged by VR immersive environment:

1

Description of the environment and sounds:
Garden: birds chirping, wind moving tree’s branches, insects flying, (bees, flies,
grasshoppers, crickets, cicadas)
References: Garden Sounds , Garden sound 2 , Windy garden

Greenhouse sound (Sounds are the same as the garden but with some reverb to give
the feeling that player is sheltered) Herbology greenhouse,

- Character sounds: Gasping when doing challenging tasks, exclamations
when doing something good or happy noises to motivate the patients.

- Movement sounds: Clothes rub Sound example
- Sound effects: Sound made by the interaction between player and object:

when picking up an object, when objects fall and when objects touch each other.

1 https://www.saebo.com/

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 113

Sound is extremely important to grant the player a realistic experience because it helps
the immersion in the virtual environment, the more accurate it is, the better the
experience. Sound is a very powerful tool and can be used to ease the patient’s therapy
and accompany the experience as it can help reaching a relaxed state where the
patient is encouraged to exercise and left with a positive feeling at the end of the
session.

VR video games can be used to distract a patient, alleviating some of the experience
of pain during tasks that can be excruciating. In this very case a bird chirping combined
with summer spring or summer sounds and the relaxing activities can put the patient
into a cheerful state which can push the patient to perform better.

As for effects, giving clothes and object sounds whenever they happen to move
increases the realism. The sounds made by the “VR Player” when something is
accomplished help the patient feel good and not give up. A cheer after a particularly
difficult task, like putting a compost bag on the table, will make the patient feel more
powerful therefore much likely to perform the same task again. Any sound concerning
failure must be avoided because the patient will feel powerless and unable to do and
will quickly lose interest in the game and the therapy. See Positive feedback loops2.

Audio and Video can be combined and reinforced by force feedback from the
controller. In rehabilitation, force feedback could prove to be very useful, as it could
provide feedback to a patient undergoing treatment by simulating the presence of solid
objects (picking up compost bags/heavy pot/moving soil) in the virtual environment in
order to sustain reproducing daily activities.

Visual
Reference: Greenhouse tour

The garden is characterized by grass, plants, lots of flowers in order to make the scene
pleasing to the eye and colorful. A fence that limits the perimeter of the player’s area,

2 https://learn.canvas.net/courses/3/pages/level-4-dot-4-feedback-loops

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 114

a fountain or water tap for actions and the player’s “working area” characterised by a
table or a stand with tools. The area around the player which is out of bounds (where
they can’t go or have interaction with objects) is characterized by plants, fence, grass
to make it resemble a quiet grass lawn of a house or other blocking objects. Some of
the patients will be able to move around (such as sport injury ones) but they will not be
able to go far from the workstation that is the focal point of the whole game. The player
in this game grows flowers and plants, harvests them from seeds and follows them
through their growth. They will therefore check them, water them, fertilize, trim them
and move them in the area to the best place for them according to how much light they
need.

A working top can be found both in the garden and in the green house. Ideally the
working station gives the feel of a workshop and the activities that the players can do
should be straight forward. There is going to be a table-top made of wood or plastic
where the player is going to perform most of the actions. This is also the place where
the players will find the tools. Tools must be placed around this space and all must
have easy access. They could be displayed as hanging in front of the players, or in a
basket or pouch.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 115

Concept: Workbench

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 116

Concept: Tools around workstation

Concept: Seed tray

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 117

Concept: Player gloves to match environment

Modality
This game can be played sitting down or standing up. There always needs to be
enough free space for the player’s action, and for this reason the working station
should be big enough. Once the players have finished their action (like planting seeds)
they can decide to move it on the shelves (display teleport the plant option for stroke
patients that cannot move too much) or can have some free shelves in front of the work
top.

There could be a teleport function in case there are some areas that are not accessible
to patients with limited mobility such as a spot in the garden where they can plant
directly on the soil or the place where they access the water tap, a storage for tools
etc. The movement settings can be customized per patient by the doctor according to
the case. For example, a sports patient can walk around and pick up objects on their
own, needing little assistance in the game by the doctor (who can focus on how the
recovery movement is executed). This is not the case for a stroke patient that will not
be able to move parts of their body and will require assistance for specific actions.

Players will require movements coming from the upper part of the body. Fairly simple
actions such as moving the torso, using their hands, shoulders, arms, moving the neck,
mouth to read out loud from instruction’s books.

For certain patients (such as dystonia’s patients) gardening actions will be further
simplified allowing the player to make one thing at a time such as picking up a flower,
or an object, pressing a button to open the garden hose, picking up a bottle of fertilizer,
putting soil that is in their hand in the pot.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 118

Players will focus on one movement specifically for one part of the body for example
opening the garden hose they will press a button, they will have dirt in their hands and
they will have to put it in the pot, put the seeds in the pot, pick up the gardening hand
shovel.

Concept: Planting seeds in container

Concept: Workbench V2. All objects are more accessible to the player.

It must be considered that some of the patients will have extremely limited mobility
therefore it would be ideal to have someone assisting them during the game in order

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 119

to avoid frustration and make them enjoy the therapy. This assistant can be included
in the game as “spectator” or as a figure next to the patient.

Assistance

The assistant may help picking up or storing objects for the player to make the
experience doable. The assistant will also monitor the progress of the patients
checking on the correctness of their movements. (In this case. the assistant may be
their carer or a virtual teacher (bot) that the patient must try to imitate.)

Social

N/A

Supported Activities

- Gardening tools include gardening hand trowel, digging shovel, bow rake,
digging fork, garden hose, pruning shears, irrigation tools, fertilizers and
compost bags.

- Greenhouse: glass windows, benches and shelves where the pots with plants
are placed, water tap or fountain. Tools: humidifier or temperature tools, hand
trowel, pruning shears, irrigation tools, fertilizers and compost bags, fans.

Ref: “Potioneer” (showing planting area)

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 120

Concept: Garden planimetry

Concept: Greenhouse planimetry

Concept: Greenhouse with improved navigation

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 121

Interactive objects

Tool Actions How to interact with
the object

Hand trowel

Pick it up
Carry it

Dig
Put it down

Take the dirt from the bag
apply dirt in the pot

Cover holes with dirt
Smoot dirt surface

1 hand - Sitting down

Digging
shovel(garden)

Pick it up
Dig a hole

Place it away

2 hands -Standing up

Bow rake(garden)

Pick it up
Collect leaves and debris

Loosen the soil
Break up the soil

Spread material(fertilizer)
Collect grass
Put it down

1 hand for small one - sitting
down

2 hands for big one - standing
up

Digging fork
(garden)

Pick it up
Loosen the soil

Lifting soil
Put it down

1 hand for small one - sitting
down

2 hands for big one - standing
up

Garden hose Pick it up
Move it and aim

Open the water tap
Close the water tap

2 hands - used combined
with the water tap

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 122

Put it down

Pruning shears

Pick it up
Aim

Cut/Shape/Trim
Put it down

1 hand, sitting down or
standing up

Fertilizers

Pick it up
Read details

Open the bottle
Pour

Put it down

2 hands, required to open it

Compost bag

Pick it up
Read details

Open the package
Pour

Put it down

2 hands - needs to be opened
and requires hands or garden
shovel tool for filling the pots

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 123

Pots

Pick up
Fill

Move

Empty 1 hand
Full 2 hands

Requires hands or shovel tool
to be filled /finger

Lightening
system(greenhouse

)

Switch on the light
Switch off the light

1 hand/fingers

Humidifier

Switch it on
Switch it off

set parameters

1 hand/fingers

Watering can

Pick it up
Fill it up

Water the plants
Put it down

2 hands, needs to be filled
with water, use combined with

the water tap

Flowers

Change pot
Pick flower up

Cut flower
Harvest seeds from flower

hands/fingers

Dirt Move
Smooth

2 hands/Tool

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 124

loosen (garden)
Lift it up

Gloves

Wear them when the games
begin

1 hand

Gardening Books
with instructions

Pick the book up
Change page with the hands

Read out loud
Put it down

2 hands

Notebook with pen

Pick it up
Write / draw
Put it down

2 hands

Seeds package Pick it up
Open

Plant the seeds
Throw away

2 hands

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 125

Water tap

Open
close

1 hand

Fan

Switch on
Regulate
Switch off

1 hand

Non interactive objects

Anything beyond the focus of this environment is placed there to complement the
environment. There is a grey-area which we could use to allow different sets of
interactive objects according to the player’s abilities. For example, in sport injuries
patients the players can look around, move in a moderate space and cannot interact
with the background objects or change room. Stroke patients can move their head to
see around but actions are restricted and cannot interact with anything that does not
belong to the working space. On the other hand, dystonia patients will have full focus
on the action that is required and will not be able to interact with anything else. In
addition, elements outside of the action will be partially removed or blurred to help
players focus on a single or a small subset of items.

Environment size

Both garden and greenhouse environments should give the impression that the
environment is realistically big and not make the player feel claustrophobic.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 126

Reference picture from “garden flipper” showing the garden area.

Players with different abilities may have different movement restrictions.

Game references

1. Garden flipper
2. Potioneer

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 127

2. SUPERMARKET ENVIRONMENT

Controller
Requirements
/ Activity

Cart
stocking

Weighin
g Petanque

Darts
(Sword

fish)

Bowling
(Detergent

s)

Hockey
(Brooms

tick)

Painting/
Writing

Basketb
all

Hoops

Checkou
t

Finger
Tracking

Palm
Open/Close

Wrist
Movement

Elbow
Movement

Wrist
Resistance

Elbow
Resistance

 Required Nice to have

Table: Controller Requirement Matrix

Reference: Supermarket VR. A good example of minigames a player could find within the game.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 128

Reference: Shelfzone VR. Supermarket view from the perspective of the player and example of teleport in the different
supermarket’s departments.

Reference: Supermarket VR. In game view.

The supermarket location was selected because it is familiar to all. As mentioned
earlier, being in a friendly and familiar environment plays an important role in the
patient's psychology helping them adapt to VR. The location can be beneficial to the
patients because it represents a common action, they might not be able to do anymore
or not without external help and it offers them a glance of “normality”. Another reason
why this environment is to be considered is that it offers a variety of different motions
that can be beneficial to sport, stroke and dystonia patients. The supermarket leaves
a certain level of freedom to both patients and developers. Developers can set a
various number of activities involving the object in the supermarket beside the common
action of buying food.

The difference between this and the garden/greenhouse environment described earlier
can be found in the type of activity. Not everybody can be fond of gardening and
passionate about it, but we certainly know that a supermarket is an extremely familiar
place where everybody visited many times and is strictly linked with common day life
activities.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 129

The activity of buying and searching for goods does not only lead the player to perform
a daily activity but also leads him to a sense of gratification. Elderly people for example,
who are not so familiar with games and technology, might find in this a nice and calming
activity that helps them familiarize with VR and have some good exercise.

The player is afforded a large amount of creative freedom in how they shop. They are
also free to mess around with the various objects in their reach, such as throwing things in trash
cans.

Audio

- Background sounds supermarket sounds, supermarket sounds2,
- Sound FX: machine blip, cash register sound
- Character’s sounds: the character is cheerful and expresses emotions while

doing activities, encouraging the players to keep up what they are doing.
- Other sounds present in the game would be: the sound of the various products

hitting each other when being put in the shopping cart, the player might
occasionally drop something on the floor, put it back on the shelf or throw it. The
sound on the footsteps of the characters, the sounds of all the machines present
in the environment, people’s chatting, shopping cart bumping into each other…

These sounds are important because they help the player focus on the game and they
give him an experience close to the real world. In this game there could also be sounds
that do not exist in real life, for example a sound like: arcade sound example, for when
the player does actions that are part of the minigames. (throwing goods in the shopping
cart like a basketball player or playing bowling with a stack of cans.) Players would be
in part entertained by the sounds and stimulated to do more or repeat the action.

The aim is to achieve a good level of realism for those who want a calmer environment
and at the same time make it more enjoyable to the people who want to play. Sounds
would therefore change according to the type of gameplay the player has.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 130

Visual

Reference: Real life photographs of common big chain supermarkets.

What is this going to look like? The idea is to recreate an environment as close as
possible to reality with colorful visuals where the players feel “at home” and safe,
something that they immediately recognize and makes them relax. In this environment
the players will immediately know what the main purpose of the game is, however, they
will need explanation to understand the level of freedom they have.

This environment will be characterized by long isles that are filled with goods from
various brands (either real or fictional) that the players will interact with in a different
number of ways. Players will be able to pick up the goods and put them in the shopping
cart, consult them (picking up the product and reading the tags), etc. The environment
we are trying to reproduce will be divided into sections like a real supermarket:

- Vegetables and fruit section
- Raw meat section
- Fish section
- Cured meat section
- Bakery
- Detergents
- Beauty product section
- Shampoos section
- Household items
- Fry shop
- Cooking section
- Candy section
- Book section

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 131

As expected, this environment is much bigger than the greenhouse. Each section will
have its own goods like a real supermarket and the player will have to search in the
proper one for certain items.

Modality

Due to its physical dimensions it might be difficult for certain players to move between
different sections. A teleport system (see reference below) can be used; here players
draw a path to a ground location and instantly teleport to it.

The use of a controller analog stick can also be used to allow for finer movement
without requiring the player to physically move out of his current position.

Reference: From “Surv1v3” the player is pointing where he wants to go using the controller.

As for checking the shelves the players would need the use of the head to move
around, or an eye tracking system whenever the players have huge difficulties in
moving. Eye tracking could be particularly helpful with stroke and dystonia patients.

In this game patients might need hands and fingers to interact with the controller plus
arm movement and head to move around. This game can be played with one hand but
given the possibility it can be used to exercise both hands and can be played both in
a sitting position or standing up.

The doctor can customize activities according to the patients in order to match his
physical capabilities (for example a stroke patient might be asked to pick up a certain
good from a shelf). Dystonia patients will be asked to do one simple movement at a
time, the focus will be on the action they have to do, and the background elements
could be few or blurred in order to facilitate them.

The session begins by choosing a shopping cart (which defined the way you will
move in the game: sitting down or standing up):

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 132

Reference: Shopping cart A

Reference: Shopping cart B

Reference: Shopping Cart C for wheelchair or people who play sitting down.

Concept: When the game begins players choose how they will be playing.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 133

According to the players choice, the quantity of items the cart will accommodate will
also change. There is not going to be a limit for stacking, but items will eventually fall

off the cart if it is too full.

Concept: First person camera, VR point of view.

Concept: First person camera of a person sitting in the wheelchair.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 134

Concept: Top down view of a player in a wheelchair.

For people who are forced to play the game in sitting position, there is going to be a
shopping cart that attaches to the virtual wheelchair so that they can focus on the
movements. In order to pick up items they just need to turn their heads or torso to face
the shelves.

Players will walk the isles where they will have shelves filled with different goods. The
isles are going to be wide to allow space for wheelchairs while granting them enough
space to turn around. Goods will be limited; a limited number of items will be present
on the shelves with some of them even having run out of goods entirely. Goods will
not spawn endlessly. Every session is going to be different; goods and their availability
can change. Players will be able to reach shelves from every position. The shelves will
be placed at medium height so that it is reachable by both sitting and standing players.
The shelves will not be very deep so everything a player can grab is also automatically
within reach.

Concept: Height of the shelves. (1)

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 135

Concept: questioning the reach of the player sitting in the wheelchair. Shelves placed in a range where everything is easily

accessible. (2)

In order to facilitate this movement for people whose movements are limited, there
could be an extendable arm that increases the movement they do, reaching way more
than the actual movement.

Concept: extendable arm.

Concept: Picking up items without an extendable arm.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 136

In order to get goods players will do actions specific for the department they are in,
such as weighting the vegetables, digitizing the number and printing the tag.

The players will be able to interact with all the goods (cans, food, products, boxes etc.)
that are found on the shelves or on the ground. Players will not be able to interact with
the shelves, manipulate them in any way, they will not be able to change anything that
cannot be bought and is part of the supermarket layout and changes the environment.
Most of the goods will be modeled with different textures and sizes to give the players
the impression they are choosing between brands.

Assistance

In addition, doctors could play a huge role in helping the patients: they could assist
their movements and help them doing the action the patients are having difficulties
with. They would also be able to monitor the improvement and see what actions the
patient has more difficulties with and change the therapy according to what they feel it
is necessary. Being an environment where the players are free to do anything can lead
the doctor to challenge them to achieve goals through unexpected and possibly
lighthearted goals (for example, for wrist injuries an activity that requires precision and
movements would be stacking up a product that has a particular shape). Players will
have total freedom of what goods to buy.

Social

In the supermarket the player will not be alone, there will be other NPCs (non-player-
characters) doing shopping because the environment of an empty supermarket might
be unsettling and scary. The player will be able to interact with the NPC like the cashier
and the butcher choosing what goods to buy. Also, upon bumping into other characters
and their shopping carts the NPC will react with sentences such as “hey”, “be careful”
etc. like in real life. When doing mini games, the np NPCs will ignore the player.
Multiplayer option N/A

Supported activities

In this environment there can be all kinds of different activities:

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 137

Vegetables and fruit section Select fruits
Weight fruits
Label fruits

Place fruits in the shopping cart
Play petanque game with fruits

Raw meat section Select meat
Place meat in the shopping cart

Fish section Select fish
Take fish

Place fish in the cart
Play darts with small swordfishes

Feed the fishes in the tank

Cured meat section Select meat
Place meat in the shopping cart
Cut the meat yourself (2 hands)

Detergents Buy detergents
Make bubble with detergents

Do piles with detergents (2 hands/
1 hand)

Play bowling with detergents

Beauty product section Buy product
Try product in the mirror

Shampoos section Buy shampoos

Household items Buy items
Play hockey with brooms (2

hands)

Fry shop Buy goods

Cooking section Buy goods

Bakery Choose goods
Buy goods

Make bread (2 hands)
Follow recipes

Book section Read book
Buy book

Paint

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 138

Write

Candy section Buy products

Shopping cart activities A&B

Move the cart
Place items in the cart

Throw items in the cart from a
distance

Leave the cart

Modes

The players will begin their adventure in different way so that the game does not
become monotonous.

- Unlimited cash
- Limited cash
- Follow shopping list
- Buy only discounted items
- Buy not discounted items
- Time challenge, shopping within given time
- Time challenge with any of the restrictions above
- Freedom mode

Game References

1. Pizza maker
2. Shooty fruity
3. Mister Mart
4. Job Simulator
5. Supermarket VR
6. Shelfzone VR

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 139

3. CRAFTS WORKSHOP ENVIRONMENT
Enjoy a relaxing afternoon creating art pieces and hand crafts.

Controller
Requirements
/ Activity

Woodw
orking Pottery Mosaic Painting Lathe Morse

Puzzle

Finger
Tracking

Palm
Open/Close

Wrist
Movement

Elbow
Movement

Wrist
Resistance

Elbow
Resistance

 Required Nice to have

Table: Controller Requirement Matrix

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 140

17.5. Visual

Concept: player view inside the backyard shed.

- The Player finds himself inside his wooden backyard shed where various types

of activities can be engaged separately. Those activities include (but not limited
to) woodworking, pottery, mosaic, painting.

- The environment is the size of a normal to medium sized room where the player

can clearly see different areas/worktops/machines where a craft is practiced.

- The workshop acts as a hub - by pointing to the selected area/worktop/machine
the player is fixed again in the sub environment

- Once in a sub environment the gameplay modality changes according to the

actions required by that section of the game.

- A central section may be required to illustrate the task at hand, such as a
whiteboard with a checklist of things to be done (replacement for using on-HUD
UI).

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 141

Concept: example of task board in the shed.

17.6. Modality
- All activities can be done sitting or standing

17.7. Assistance
- The environment allows the presence of a 2nd player that can assist with the

actions as if the first player were doing them.

17.8. Social
- The end of each activity results in one or more artifacts which can be stored as

discrete virtual objects. For example, the Player has created a mosaic painting
of a simple portrait or a simple table.

- These objects can be put up for display, traded/gifted with other players, rated
by other players (system of ‘Likes’). (A new kind of leaderboard where others
vote for your content)

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 142

17.9. Supported Activities

Concept: example of pottery activity.

- Woodworking: tasks include creating simple objects like tables, chairs, stools,

objects of simple geometry. This would mean sliding sheets of pre-marked wood
across saws, placing them on pre-marked points to glue them together etc.…
Considerably basic actions are required to perform the operation, assembly
done in Ikea-like fashion.

- Pottery: use one hand or both to mold a piece of clay into a simplified pot of
different shapes. Finally place in the oven/furnace to bake.

- Mosaic: given a shape or a description, cut a few pieces of shards and glue

them on a canvas to produce the final work of art.

- Painting: dip your brush to change color and paint a picture on a virtual 3D
canvas.

- Lathe: transform a block of wood into a usable piece of art by chipping away
with a chisel (produce a goblet, stand, candlestick holder, handles, knobs).

- Morse code: potentially fun to have Morse-code build into the equipment for

some puzzles. Easy to understand once you get used to the alphabet.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 143

4. UNDERWATER ENVIRONMENT
Sit back and unwind as you explore this aquatic world full of wonder.

Controller
Requirements
/ Activity

Sample
Collecti

on

Fish
Capture

Waypoint
s

Treasure
Hunting

Finger
Tracking

Palm
Open/Close

Wrist
Movement

Elbow
Movement

Wrist
Resistance

Elbow
Resistance

 Required Nice to have

Table: Controller Requirement Matrix

17.10. Visual

- The Player finds himself inside the cockpit of his small, trusty mechanical
submarine that is free to explore the surrounding ocean.

- Most of the cockpit is made up of glass giving the player a good view of the
surrounding ocean (extruded cockpit) and though small the sub is not that small
as to induce claustrophobia.

- The player is confined to the sitting position in the sub and is not allowed to go
anywhere else.

- Navigation of the environment is done by moving the submarine with a joystick
(grabbing a virtual joystick) or pressing one of the virtual buttons on the dash.

- (UI) Elements of the activities supported by this are drawn on the sub’s viewing

sphere: such as a map or objective, counters, etc.…

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 144

- A central section may be required to illustrate the task at hand.

Concept: Navigation via stick for Forward/Backward/Sideways. Additional Up/Down and rotational buttons illustrated.

17.11. Modality
- All activities involving the sub are sitting down.

17.12. Assistance
- The environment allows the presence of a 2nd player that can assist with the

actions such as sub navigation. Alternatively, also taking over total control of
the game where necessary.

17.13. Social
- N/A

17.14. Supported activities
- Sample collection: extend the sub’s robotic arm to collect samples of sand,

coral and other marine life.
- Fish Capture: swing your robotic arm equipped with a catch net to capture live

aquatic fauna.

- Waypoint Traveling: navigate your sub around a set of waypoints for a scenic
tour.

- Hunting: aim your net (harpoon? stun gun) to acquire the target marked by your
HUD.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 145

- Codex: complete this entry book of all the flora and fauna you have discovered
while playing.

- Treasure Hunting: use sonar to find forgotten pieces of history.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 146

5. SPACE ENGINEER ENVIRONMENT
There is always something to fix on this floating heap of metal!

Controller
Requirements
/ Activity

Puzzles Maintena
nce

Item
Recovery

Finger
Tracking

Palm
Open/Close

Wrist
Movement

Elbow
Movement

Wrist
Resistance

Elbow
Resistance

 Required Nice to have

Table: Controller Requirement Matrix

17.15. Visual

- The Player finds himself inside the most fault-prone space station known to
mankind that is currently also orbiting Earth. The surroundings are that of a
typical space station with large panes of glass displaying outer space Feel
should pivot to light-hearted/comical rather than realistic.

- A central monitor at the center/hub (or talking AI) of the station displays areas
of the station that currently require maintenance (some inside the station, some
outside). This information might need to be relayed via a watch-like device.

- The Player can look around and easily identify the location or where to go by in-

environment highlights such as a luminous floor.
- The Hub connects to a series of exits or areas inside the ship. For example:

Service Shaft A, B, Left/Right wing exit, etc.…
- The Player can be required to fix something on the inside or on the outside

where there is zero gravity.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 147

- On leaving the station the Player is automatically put inside a suit and on looking

down a virtual joystick for navigation can be found.

17.16. Modality
- All activities can be done sitting or standing.

- Movement inside the station is point-based; gravity is also present inside.

- Movement outside the station is done by grabbing a virtual joystick held chest-

high and moving along one planar direction. The direction follows where the
Player is currently looking.

- Fixing ‘things’ means going around the station and solving puzzles and/or
beating the proverbial problem with a wrench (light-hearted approach).

Concept: first concept of the spaceship’s main room.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 148

Concept: An example of a puzzle that can be found in the spaceship.

Concept: Example of how to solve the puzzle. Puzzles will be solved in real-time through the help of nearby objects

.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 149

Concept: Another example of pipe-type puzzle.

Concept: How the puzzle is played and solved.

17.17. Assistance
- The environment allows the presence of a 2nd player that can override the

control of the Player when necessary. This is especially necessary for the
outside sections where navigation is an activity.

17.18. Social
- N/A

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 150

17.19. Supported Activities
- Puzzle: Restoring power by redirecting flow of current. Done by dragging or

rotating flow (Pipe Dream3) of key pieces on a display board in front of the Player
or by moving pieces of block circuits around (Sokoban4). Other minigames can
be incorporated into this.

- Hands-on Maintenance: fixing power flow such as closing or turning valves,
welding air leaks, patching hull. May involve grabbing pieces from a section of
the station before leaving.

- Item Recovery: recover an item/rock/artifact from outside the station.

3 https://www.youtube.com/watch?v=Y_C-xzSKg-k
4 https://youtu.be/dzlGmq_ef9U?t=36

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 151

6. COOKING SHOW ENVIRONMENT
Having been called to fill in the shoes of the previous host, it is up to you to cook
the most delicious dishes on the fly!

Controller
Requirements
/ Activity

Applian
ces Grilling Chopping

Veg. Pouring Stirring Carrying

Finger
Tracking

Palm
Open/Close

Wrist
Movement

Elbow
Movement

Wrist
Resistance

Elbow
Resistance

 Required Nice to have

Table: Controller Requirement Matrix

17.20. Visual
- This design can be split in 2 versions: one in which the Player is in a studio

kitchen setup where facing him/her would be the audience/cameras and behind
the real kitchen. The other version is where the Player is in a real-world kitchen
following recipes from a TV set. This document will describe the first version.

- In front of the Player is a typical studio set composed of spectators, a couple of
cameramen and 4 judges.

- Extending just in front of the Player and directly behind him is a fully-fledged

kitchen: Fridge, oven, cupboards, etc.…

- Just in front of the Player (and where most of the ingredient mixing and placing
will take place) is the counter.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 152

Concept: Cooking show environment example.

17.21. Modality
- All activities can be done sitting or standing.

- Movement is handled via a pointer across 3 or 4 preset locations to access

points of interest such as taking objects out of a cupboard, putting a dish in the
oven.

- Requires grabbing/manipulation of items in the world, at least one hand.

17.22. Assistance
- The environment allows the presence of a 2nd player that can override the

control of the Player when necessary. (Co-op).

- Helpers can bake/cook along with the patient.

- Tweakable difficulty such as finding the items already on the counter.

17.23. Social
- Album-like structure that logs pictures of the original 3D model of the artifact

produced, including rating.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 153

17.24. Supported Activities

- Cooking: The Player receives a cooking ‘job’ at the start of the session. An
announcer voice proceeds to dictate what you will be doing in the next steps.
Direct instructions are also visible anytime when looking ahead to the oversized
teleprompter. Ingredient quantities are mostly up to the Player having to judge
accordingly (for example: you are making a spicy pizza and you can choose
whatever spicy topping you want as long as it is spicy, but you must also not
over-do it) The mood of the game is lighthearted - grading parameters are not
very harsh. At the end, the produce is baked (if applicable) and the judges each
grade the cooked food based on loose parameters such as recipe accuracy etc.

- Actions:

- Appliance usage: Opening and closing of oven/microwave, turning timer
dial

- Grilling: flipping meat patty

- Cutting: chopping vegetables such as carrots or coriander

- Opening/Closing: containers housing liquids or powder

- Pouring: pouring oil

- Stirring: using a handle spoon to stir soup

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 154

7. CAR ENVIRONMENT
A car represents a common everyday tool that people constantly use to move from a
place to another, to a person who had severe injuries it becomes something they can
no longer take advantage of and they miss it deeply. For older patients being able to
drive again even if just in VR can be an incentive to work hard and at the same time
have fun.

The car/driving environment can be useful because it offers a large range of actions
that involve fingers, arms, shoulders, head and torso. In the games involving the car
the player will be required to play from a sitting position and move the upper part of the
body, above all focusing on fingers, hands, wrist, elbow and neck.

Controller
Requirements
/ Activity

Ignition
Open/
Close
Door

Seatbelt Hand
brake Radio Signaling /

Wipers Gears

Finger
Tracking

R N R

Palm
Open/Close

N N N N N N

Wrist
Movement

N N N

Elbow
Movement

N N N N N

Wrist
Resistance

R R R

Elbow
Resistance

 N

 Required Nice to have

Table: Controller Requirement Matrix

Audio

The background noise while driving the car changes according to the driving location.
These are always slightly muted when windows are closed. You can also hear other
sounds such as:

1. other cars while driving
2. Engine sound
3. Horns, ambulances or police cars if you are in a city environment

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 155

4. Braking sounds and various ambient sounds according to where the scene is
taking place.

Sound References:

1. City noises
2. traffic sounds
3. big city traffic sounds
4. car sound effects

Sounds are important to give authenticity, and to accompany the players action in order
to make him feel as close as possible to reality.

Possible scenarios where the patients can drive a car:

1. City landscape
2. Countryside
3. Seaside Town
4. Mountain landscape
5. Desert highway

Visual

The player enters the car and sees a typical car interior with the following
simplifications. We are striving to simplify the interior to make controls and gauges
more accessible and visible in this game context. (See figure 1)

Concept: Driver seat view.
All the buttons are around the player

but there is no space for a second
person (doctor/ instructor).

Concept: The first-person point of
view of the one seat car offers a

slightly wider view but the room where

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 156

the player moves is less.

Concept: backseat view.
All the buttons are like the one seat

view, there is more space to add
extra ones.

Concept: First person point of view.
The player is not facing the very

center of the windshield but there is
plenty of room to see outside.

The single or two-driver point of view
do not differ too much, but the latter

allows for adding more controls while
supporting the option to have a seat

for the assistant.
Concepts: Car representations

The player finds himself in a vehicle, big enough for the player to sit comfortable and
not feel claustrophobic. The surroundings are composed by:

1. A centered steering wheels
2. The turning signals will be placed to the left and right of the steering wheel in

the form of buttons or using the traditional switch type.
3. Other additional controls include fog lights, full beam headlights, hazard

warning lights etc.)
4. The car engine is started through a big key that must be placed in its hole near

the steering wheel and a “start” button.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 157

Ref: Push to Start button

5. Big dashboard gauges so they can easily be read by visually impaired people.
6. The gear shifter is an optional accessory
7. The height of the seat can be adjusted according to the player necessities

through the settings menu.
8. The player is confined to the seat and cannot go anywhere else.
9. The car will automatically move based on the instructions.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 158

Objects the player can interact with:

Steering wheel & horn

Can be used with 2 hands.
Requires the movement of the elbow and

shoulders.

Car door handle

1 hand and use of fingers

Car windows power

 1 had and use of fingers

Car door lock

1 hand and use of fingers

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 159

Turn signal & lights settings

1 hand, use of the fingers and movement
of the wrist

Rear view mirror

1 or 2 hands
Head movement

Side view mirror

1 hand and elbow movement
Head movement

Gear shift

1 hand, wrist and elbow movement

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 160

Handbrake

1 hand, wrist and elbow movement

Ventilation control and air vents

Use of the fingers

Car radio

Use of the fingers

Seat belt

1 or 2 hands, wrist and elbow

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 161

Emergency flashers

Use of the fingers

Visor

1 or 2 hands and elbow movement

Objects player cannot interact with:

Dashboard

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 162

Windscreen wipers

Modality

● This environment requires 2-hand controls
● To avoid nausea, the car would move at slow speeds
● This environment requires player to be in seated position
● The doctor could take the second seat as “instructor”
● The player would be represented by a pair of hands and looking down he should

see its legs and body. (One standard body for female and one for men)

Assistance

- The player can be placed side by side with an instructor. (doctor/carer)
- Assuming there will be other cars the amount can be modified so players focus

on the basics not traffic navigation.
- The number of curves, intersection, traffic lights and objects that increase

difficulty can be tuned.
- Input from a player's actions can be modified according to needs (amplified or

reduced).

Social

- Being assisted by an instructor could also give you points according to how well
you drive and a shared leaderboard among the players. (There is not going to
be a global leaderboard, but it is divided per difficulty. People with similar
abilities will be put in the same leaderboard.)

Supported Activities

Common actions performed around a car are the following:

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 163

1. Upon entering the car, the patient takes out the keys and according to
the model of the key we can have 2 movements: inserting the key in the
keyhole and rotating the hand or pressing a button with the fingers to
open the car from remote.

2. Patient closes the door with the movement of the wrist and applies
strength on the handle. Movement would require the person to be able
to grab, hold and pull toward himself.

3. Patient opens the door with the movement of the wrist and applies

strength on the handle. Movement would require the person to grab, hold
and push (from inside a car).

4. Patient would grab the safety belt with the use of the fingers, wrist and

elbow motion to fasten it.

5. Patient would insert the keys to start the engine, this requires the use
of the elbow and a rotation movement from the wrist plus holding the
keys with fingers.

6. In order to start the car, the unlock the change and change gear,

involving the movement of the elbow and applying strength.

7. Switching Radio on/off involves pressing with the fingers.

8. Showing directional arrows, turning on the headlights or using the
wiper blades involve using the finger to set the proper command and
activate it.

9. If the environment is set in a sunny day scenario there could be a

movement to set the sun visor through the movement of hand and
elbow.

10. In order to drive the patient will have to grab the steering wheel and hold

it with his hands and move his arm/elbow to change direction.

11. To use the horn, patient will have to use one hand and press on the
middle part of the steering wheel applying force with the hand/ fingers.

12. In the car the patient would have to change gear with the help of hand

and elbow movement, placing the correct gear applying force (pulling,
pushing and lateral movements).

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 164

13. Open the windows can be done using either a retro (recommended)
rotating style window handle or a push-button powered electric window
control.

Example 1: windows with handle.

Example 2: Push a button down/pull up to
open/close the window.

14. Change the direction of the air vent which requires the use of the finger
plus elbow motion toward a direction.

15. The patient could switch on/off the radio and change songs using the
movement of the fingers and applying force to press a button.

16. The patient could also switch on/off the air conditioner through the

same movements used for the radio.

17. In the car, the patient would have to change the angle of the rear-view
mirrors adjusting it with the movement of the wrist.

18. The patient could open/close the storage compartment using fingers,

the movement of the arm and applying force.

19. They could use the emergency brake handle holding it and pulling it up
or pushing it down.

20. The patient would adjust the side view mirror using the hand and

moving the elbow.

21. The patient would adjust their seat using the hand and fingers.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 165

22. The patient could use the windscreen wiper to clean the windshield,
activating it through a button he will push with the fingers.

Concerns

● If this concept is chosen, we must find creative solutions to how the car
accelerates and stops without user behavior and without making them feel
nauseous.

● Will the controller support add-ons that resemble something like a steering
wheel? Having 2 free hands might break the impressiveness.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 166

8. MUSIC ROOM ENVIRONMENT

The music room could be a theme fitting all range of ages. Instruments are expressive
tools that people like to practice with and music is a common theme employed in the
videogames industry spawning the genre of Rhythm Games with titles such as “Guitar
Hero” or “Beat Saber”. Music is beneficial to people because it can stimulate or calm
down according to the feeling it evokes in the person listening to it. A person who was
injured might feel comfort in playing a VR instrument that they find difficult in real life.
5

Controller
Requirements
/ Activity

Guitar /
Bass Drums Piano Violin Maracas Xylopho

ne
Tambou

rine

Finger
Tracking

Palm
Open/Close

Wrist
Movement

Elbow
Movement

Wrist
Resistance

Elbow
Resistance

 Required Nice to have

Table: Controller Requirement Matrix

Notes

● Possible instruments are: Piano, Xylophone, Maracas, Triangle, Tambourine,
Cymbals and Acoustic Drums.

● It would be possible to include a large variety of instruments if the input is
simplified.

5Study about dystonia in musicians. Link

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 167

Example: Guitar Hero’s guitar comes with 5 buttons instead of strings.

● The speed of the song and must calibrated to each game and level of difficulty
(assuming there is going to be a game following the style of the example above)

Visuals

- The player finds himself in a room with a couple of different instruments he can
play with.

- Each instrument has a station and the stations are around the player.
- The player is represented by hands.
- The room the player is in is a big room whose walls are covered with sound

absorption panels.
- The room is big and colorful with poster on the walls representing bands and so

on, natural light fills it giving it a welcoming atmosphere
- The room could be in a school or in a private house
- The light comes from a window but there is also artificial light on the ceiling of

the room (artificial LED of various colors might be an option to consider).
Lightning is especially important in real life for performing music because it
stimulates the player and creates ambience.

- Each station accesses a rhythm game related to the instrument. For example,
the player accesses the piano area and each key or subset of keys of the piano
corresponds to a note the player must press. video example

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 168

Concept: example of the room once the player enters the game, instruments are all around him and easy to reach.
Each instrument defines a station

Concept: Second iteration of the music’s room layout. The layout was changed because it was difficult to teleport for
the player to teleport correctly in every station.

Social

The music room is somewhere in real life musicians meet to play. In this case we
could define the social aspect of the game like:

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 169

- Creating a system where players can share their music and have likes.
- Sharing their creations on social networks.
- A scoreboard that applies to existing songs (players can get points for

accuracy)
- Playing the same song with another patient (tentative).
- Joining a music course with a teacher (assistant).
- There could be a system of trophies and reward the player must achieve as well

as daily tasks.
- There could be a leaderboard with the songs for each song or a leaderboard

with the best scores

Modality

- The activities can be done both standing up or sitting down.
- 2 hands are required for most activities, but some can be simplified down to

one.
- All instruments are placed around the player and they can be easily reached.
- The level of difficulty can be changed according to the patient’s needs; for

example, playing the piano could be done with patterns composed of just 2 keys
and then scaled up with practice.

Required movements

In this environment the movements required from the player are:

- Pressing the keys of the piano with the fingers
- Grab the drumsticks
- Hold the drumsticks
- Move the drumstick to a required location (the drum or xylophone)
- Movement of the shoulder-wrist to move the drumsticks
- Movement of elbow with the maracas

These movements are explained in more detail below.

Concerns

If this concept is considered, we must find a way to represent instruments played with
strings such as guitar or violin which are harder to represent on VR. The solution
adapted in this document is to divide the string instrument into bigger segments that
would act as discrete buttons (see Riff VR).

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 170

Riff VR partitions the guitar neck board and uses these as discrete inputs.

17.25. Instrument Breakdown
Guitar / Bass
Played: Standing or sitting position
Hands: requires both hands.

Instrument can be picked up and locked on position on the chest as if it were strapped
(req. Upper body tracking). Needs to be height adjustable. Support for right-handed
possible.

Simplification:
The fretboard is divided into 5 parts, each part is roughly the width of a hand. The
player can slide his left hand up and down these 5 parts. By clutching the fingers /
pressing a trigger that part becomes ‘held down’ else it is ‘held up’. The right-hand
rests near the body of the guitar and can hit the strings with a downward strum.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 171

How to play:
With the left hand clutching the correct part of the neck board the right hand can apply
a downward or upward strumming motion to hit the strings. The timing counts when
the right hand contacts the strings to generate the input.

After starting a song, an adjustable preview of the notes to be played is displayed
(attached to the neck board). From here on the gameplay is like other genre titles.

Controller Requirements:

● Finger Tracking (at least Open/Close of Palm for left hand)
● Wrist movement (right hand)
● Elbow movement (mostly left hand)

Concept: example how to play a guitar/bass

Acoustic Drum Kit
Played: Sitting down
Hands: requires both hands
Instrument is mostly fixed in place however the possibility to slightly adjust range of
some instruments can be considered. The parts will be: Hi-hats, snare drum, kick drum,
1x tom, 1 cymbal. The Player can pick up and hold the drumsticks.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 172

Simplification:
To hold the sticks the Player must clutch his fingers or use a trigger. For the most part
the instruments will respond to being hit with the sticks. Hitting force can generate
higher amplitude but this should not be considered for gameplay. The kick drum is a
concern at this point because we are not tracking the feet nor using an auxiliary input
device such as a pedal. A sensible option would be to add an additional drum that
replicates this function/sound while keeping the existing kick drum for visual
authenticity.

How to play:
Playing this instrument is as straightforward as hitting the correct kit piece as defined
by the timing. Timing counts when the instrument is hit with the stick.

After starting a song, an adjustable preview of the notes to be played is displayed
(visible directly in front of the tom, notes sliding down). From here on the gameplay is
like other genre titles.

Controller Requirements:

● Palm Open/Close (both hands, hold sticks)
● Wrist movement (both hands)
● Elbow movement (both hands)

Concept: sample POV when playing the drums.

17.26.
Piano
Played: sitting down

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 173

Hands: requires both hands

Simplification:
This activity has 2 major concerns: how accurate the finger tracking determines
whether the keys are similar in size to the real life counterparts and pressed individually
or whether they are simplified in larger shapes such that they can be pressed with
multiple fingers (less accurate option). This latter approach has an adverse effect on
the Piano’s visual authenticity but is perhaps the more sensible especially for people
who are not familiar with the piano at all. Below we describe such an option.

The number of keys is significantly reduced to about 8, all keys will be at the same
level (no flats or sharps). The Player is expected to use both hands, each hand
covering the range 4 keys. Depending on how accurate tracking is these keys can be
small such that they can be pressed with individual fingers or, alternatively larger keys
can be used and the whole hand acts as the activator.

How to play:
Playing the piano would be as straightforward as hitting the correct input keys at the
correct time as indicated by the preview.

Controller Requirements:

● Finger Tracking (both hands, pressing of keys)
● Elbow movement (both hands, seek keys)

Other instruments
Some short notes about other instruments that can be supported:

● Violin: Simplification on the neck of the instrument can be applied however
finger tracking would be a requirement as the instrument’s neck is quite small.
The right hand holding the bow would need to be moving to sustain the note.
Use of both hands required but can be played sitting down or standing.

● Maracas: Can be used with one hand but two hands offer a richer experience
in terms of gameplay. Playing this instrument in VR would involve the Player
hitting or keeping within the range of note blocks coming towards him/her from
the horizon; like many existing VR beat games. Due to the motions required for
this type of activity it is likely to be done in standing position only.

● Xylophone: Like the acoustic drum kit example however this instrument can be

represented on a 1:1 basis depending on the accuracy of the tracking and the
ability of the player.

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 174

● Tambourine: shares similarities with maracas with the differences that the
motions followed can be different. For example, the technique hitting the
tambourine with the palm of your hand can be incorporated into the motions to
perform, it is not simply a case of meeting the end of the hand with the oncoming
block or pattern.

17.27. Game References

1. Audioshield
2. Holodance
3. Audica
4. Dance Collider
5. Synth Riders
6. Electronauts6
7. Beat Saber
8. RIFF VR
9. Beats Fever
10. Airtone
11. Rock Band VR
12. Soundboxing
13. Guitar hero

6 List from VR game critic

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 175

9. OFFICE ENVIRONMENT
Perform your day-to-day office duties as required - one day that Employee of the
Month Award (and hefty bonus) will be yours!

Controller
Requirements
/ Activity

Filing
Office

Accessor
ies

PC
operation Signing Rubber

Stamping
Paper
Toss

Phone
Answering

Finger
Tracking

Palm
Open/Close

Wrist
Movement

Elbow
Movement

Wrist
Resistance

Elbow
Resistance

 Required Nice to have

Table: Controller Requirement Matrix

Visual

● Player finds himself at the seat of an everyday L-shaped desk in a slightly
cramped but luxurious (for his stature) small office.

● Front: Monitor + keyboard + tower of the era (depending on average age of
patients this can be late 90-mid 2000s, i.e. CRT monitors)

● Other objects/interactables close at hand

○ Folder Rack
○ Desk Drawers
○ Filing Cabinets
○ Accessories: Stapler, Puncher, Pen, Pen holder, Radio, Rubber Stamp
○ Coffee Machine + Cup
○ Dart + Hanging target
○ Corded Phone

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 176

○ Whiteboard / live display

● Behind player: relaxing garden view

● Infront player: view into corridor. Beyond the corridor is another garden with
further view obscured by vegetation. Occasionally people can be seen walking
in front and/or entering office from here.

● Lighthearted feel stylized aesthetics.

● Possible locations/roles: Law Firm, Online Retail Company, Storekeeper, Event
Organizer, Bank.

Concept: example of an office layout for a VR game where everything is around the

player.

Modality

● All activities inside the office are performed sitting down.
● Nothing should be directly out of reach; we can imagine the Player as being on

a swivel chair.

Assistance

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 177

● Scalable difficulty: amount of actions required; number of jobs reduced, as
necessary.

● Second player can drop in and act as a second pair of hands that can perform
any action (as listed further below) the patient can.

Social

● Assuming a deterministic flow of tasks in the game, players would be able to
see their performance to achieving the Award against other players or against
your previous efforts. This acts as a public leaderboard and is visible by any
player.

Supported Activities:

Concept: example of gameplay on the office’s desk

● Gameplay: The Player starts the day and is given a set of tasks to do for that
day. This is communicated via a board or live display in-environment just in front
of the Player. There is no set time limit for completing the objectives however
the run is timed, and this time affects the rating/score (shorter time -> better
rating).

Objectives update in real time, completed objectives may disappear from the

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 178

board. Some objectives can be cryptic and are left to the player to figure out: for
example “I hate my boss!” would require the player to pick up a playing dart he
has casually lying on the desk and throw it at a picture of the boss on the wall.
These can be optional objectives.

Additional objectives can occur people show up requiring objects or documents
which you must find and hand in. Emails can come in adding a new objective.

At the end of the day the Player’s performance is graded and a rating is given
of where he is stacked up with the other fictional AI employees that are all
competing for the same award. This goes on until either all days are completed,
and the Player has either won or lost the award.

● Discrete activity types:

○ Filing: grabbing folders from the rack and putting them inside the correct
filing cabinet drawer.

○ Punching paper before sliding it into a folder.

○ Paper clips/stapler: attaching mixed photos to their application forms
(match the comic description to the picture).

○ Use your computer: use the simplified keyboard (contains 4 large

buttons) to match out a sequence on your PC. Use this to reply to emails,
calendar events, play a simplistic minigame.

○ Write with your pen: your signature on papers

○ Rubber stamp forms: decide who gets taken as new employees based

on some criteria.

○ Paper toss: Hit specific objects/other employees (not so kind to you) by
tossing a piece of paper, launch a paper plane for longest flight,

○ Phone call forwarding

Day Example:

Board contents:

❏ Re: Janice / Accounting
 You have one email to process from Janice in Accounting.
 (Keyboard entry mechanic / mash any button or pattern match)

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 179

❏ New Applicants
 Your inbox rack has some new applicants.
 Decide who to approve with your rubber stamp.
 Do not approve inadequate candidates!

❏ Customer Support
 You will receive some calls during the exercise.
 Answer all calls but do not forward any of the angry sounding ones!

❏ “It wasn’t me”
 Hit a passerby with any object from your office.

Game References:

● Job Simulator: general dynamics of play
● Untitled Goose Game: objective presentation

10. BAR ENVIRONMENT
Manage your bar properly, keep everyone happy and watch those customer ratings
soar!

Controller
Requirements
/ Activity

Mixing
Cocktail

Pouring
Pint

Operate
Remote
Control

Fly
Swatting

Pint
Bowling Darts

Finger
Tracking

Palm
Open/Close

Wrist
Movement

Elbow
Movement

Wrist
Resistance

Elbow
Resistance

 Required Nice to have

Table: Controller Requirement Matrix

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 180

Visual

● Player finds himself in the role of a bartender: working the counter of a typical
contemporary English pub.

● A selection of drinks is available behind the player as well as empty
glasses/pitchers. Empty glasses can also be found under the top portion of the
bar directly in front of the player.

● Other items in the immediate vicinity of the Player include the cash register, ice
container, peanut container, darts, TV remote, reference tablet, opener.

● Typical evening, light-hearted mood. One can see other tables and patrons
sitting enjoying their day.

Concept: an idea of how the bar layout might be, all objects are around the player who can have easy access to them.

Modality

All activities carried out assume standing and stationary position though he will
be required to turn around. This should be adaptable (by means of a high stool)
to players unable to leave a sitting position.

Assistance

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 181

● Adaptable difficulty: actions required to perform action can be simplified.
Opening a bottle may not require twisting/using an opener or mixing drinks may
not require shaking at all. There is a limited amount of actions that can be
omitted in favor of easier difficulty and some games would not be as scalable,
if at all. Visual aids such as highlighting can alleviate difficulty.

● Direct assistance: in the case where the above method is not enough direct
intervention from an assistant might be necessary.

Social

● None but perhaps we can use progress markers (discovered types of drinks) or
achievements sharing.

Supported Activities:

Concept: first person view of player serving a cocktail to a customer.

● Mixing a cocktail: a main activity that would happen often is taking in an order
for a cocktail or drink and having to make it on the fly. This would involve looking
up a simple recipe, pouring and shaking and presenting (depending on difficulty)
it. Occasionally you might be asked to add your own touch to it by adding
additional ingredients. We can expand this to creating your own drinks, with
some combinations creating hilarious effects (these can be standard orders too)

● Pouring a Pint + Snack: just about what it sounds. Can be made more
interesting if the ‘draught machine’ delivering the beer does not always work as
expected (slow/fast flows, refuses to work, dispenses something else instead of
beer, etc.).

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 182

● Changing TV station: keep an eye on what is coming up on the television -
make sure you switch to the correct football match to keep the patrons happy.
(Using a remote control)

● Fly swatting: Pick up your trusty fly swatter and dispose of the annoying fly that
will occasionally come and pester you.

● Pint bowling: Some patrons at the far end of the bar top will sometimes
demand beer. Poor pints and slide them to the end of the counter without them
dropping or hitting anything else on the way.

● Play darts: throw darts anytime or play a game against one of the patrons.

● Other: Takeaway handling, Handle Cash Register, Happy Hour bell tolling.

Game References:

● Job Simulator: general dynamics of play
● VA-11 Hall-A: objective presentation

PRIME-VR2_D_WP6_D6.1-PLATFORM_IMPLEMENTATION_PLAN-CC 183

APPENDIX 5

CONTROLLER INTERACTION MATRIX

Controller Requirements - Input

Name Definition

1. Movement Tracking
Most games need to know the position of the
hands, their movement speed, and their rotation

A. Position
E.g. Pushing a button or painting with a
paintbrush on a canvas

B. Rotation E.g. Watering a plant
C. Velocity E.g. Throwing darts

2. Friction (force requirement)

Living labs mentioned a requirement where
players must excerpt force to play the game.
(Around 20kg of force)

2A. Rotation movement (orientation) E.g. Opening a tap of water

2B. Horizontal movement
E.g. Pulling the string horizontally while doing
archery

2B. Vertical movement
E.g. Pulling a heavy sack in an
upwards/downwards movement

3. Finger tracking
In some cases, we need to track if palm is
open/closed OR individual finger movement

3A. Palm status E.g. Using a stapler at the office
3B. Finger movement E.g. Playing the piano

4. Joysticks, triggers, and buttons

We have not outlined how many buttons and
triggers we need yet but we will need at least 1
joystick, 1 trigger and 1 action button.

4A. Joystick E.g. Turning around in some environments
4B. Trigger (multistage) E.g. Start action to pick something up

4C. Action buttons
E.g. Push a button (trigger could be used as
well but best have other options)

Controller Requirements - Output (Feedback)

Name Definition

HD Haptic feedback

Haptic feedback like commercial controllers that
help simulate and give feedback on actions
taking place in game.

