

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED_PROTOTYPE_DEMONSTRATION

D6.3
INTEGRATED PROTOTYPE

DEMONSTRATION

Grant Agreement nr 856998

Project title Personalised recovery through a multi-user
environment: Virtual Reality for Rehabilitation

Project Acronym PRIME-VR2

Start day of project (dur.) October 1st 2019 (3 years)

Document Reference PRIME-VR2_D_WP6_KRL_D6.3-Integrated
prototype demonstration

Type of Report PU

Document due date 30/09/2021

Actual date of delivery 30/09/2021

Leader KRL

Responsible Gábor Vadász (KRL)

Additional main contributors
(Name, Partner)

Robert Sarosi, KRL
Alexander Baranov, CPD
Anthony Demanuele, FSG
Matthew Azzopardi, FSG
David Swapp, UCL
Felix Thiel, UCL

Document status [Reviewed by Philip Farrugia (UOM)]

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 856998

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 2

This	document	is	shared	under	the	following	Creative	Commons	License	

This	is	a	human-readable	summary	of	(and	not	a	substitute	for)	the	license.	

You	are	free	to:	

Share	—	copy	and	redistribute	the	material	in	any	medium	or	format		

Adapt	—	remix,	transform,	and	build	upon	the	material		

The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	
terms.	

	

Under	the	following	terms:	

Attribution	—	You	must	give	appropriate	credit,	provide	a	link	to	the	license,	
and	indicate	if	changes	were	made.	You	may	do	so	in	any	reasonable	manner,	but	
not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.		

NonCommercial	—	You	may	not	use	the	material	for	commercial	purposes.		

ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	
distribute	your	contributions	under	the	same	license	as	the	original.		

No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	
measures	that	legally	restrict	others	from	doing	anything	the	license	permits.		

	

Notices:	

You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	
public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	
limitation.		

No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	
necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	
privacy,	or	moral	rights	may	limit	how	you	use	the	material.	 	

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 3

Table of contents

EXECUTIVE SUMMARY 6	

1	 INTRODUCTION 7	
1.1.	 TERMINOLOGY 7	

2	 TECH STACK 9	
2.1.	 PROGRAMMING LANGUAGE 9	

3	 UNITY SDK 10	
3.1.	 INTRODUCTION 10	
3.2.	 PLATFORM LOADER 11	
3.3.	 VR GAMES 12	
3.4.	 BACKEND 13	

4	 GAME IMPLEMENTATION 14	
4.1.	 INTRODUCTION 14	
4.2.	 GAME VS EXERCISE MATRIX 16	
4.3.	 PHASE 2 - MINI GAMES 17	
4.3.1.	 SPLATORAMA 17	
4.3.2.	 SHAPE SHIFTER 19	
4.3.3.	 GARDEN MASTER 23	
4.3.4.	 STEADY HANDS 26	
4.4.	 GAMES UNDER DEVELOPMENT 28	
4.4.1.	 MINI GOLF 28	
4.4.2.	 BASKETBALL 30	
4.4.3.	 PETANQUE 31	
4.4.4.	 RHYTHM IN THE KITCHEN 32	

5	 WEB PLATFORM 33	
5.1.	 INTRODUCTION 33	
5.2.	 SELECTED TECHNOLOGY STACK 33	
5.2.1.	 RUNTIME ENVIRONMENT: NODEJS 34	
5.2.2.	 PACKAGE MANAGER: NPM 34	
5.2.3.	 FRAMEWORK: ANGULARJS 34	
5.2.4.	 ASSET BUNDLING: WEBPACK 35	
5.2.5.	 CONTAINERIZATION: DOCKER 35	
5.3.	 SOFTWARE COMPONENTS 36	
5.3.1.	 WEB PLATFORM BACKEND AND API 36	
5.3.2.	 WEB PLATFORM FRONTEND 37	
5.3.3.	 DTO (DATA TRANSFER OBJECTS) 38	
5.4.	 CLOUD INFRASTRUCTURE & HOSTING 39	
 40	
5.4.1.	 DATABASE 40	
5.4.2.	 STORAGE, GOOGLE STORAGE 41	
5.4.3.	 CONTAINERISATION 41	
5.4.4.	 NETWORKING & SECURITY 41	
5.4.5.	 CLOUDFLARE 41	
5.4.6.	 SCALABILITY 41	
5.5.	 DEPLOY PROCESS 41	

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 4

6	 PERFORMANCE METRICS 44	

7	 VALIDATION CRITERIA 44	
7.1.	 OUTLINE 44	
7.2.	 RE-FRAMING OF EVALUATION TO INCLUDE STANDARD CONTROLLERS 44	
7.3.	 USER ASSISTANCE MECHANISMS 45	
7.3.1.	 AUTOMATED THROUGH THE CONTROL INTERFACE 45	
7.3.2.	 HUMAN-IN-THE-LOOP 45	
7.4.	 DEVELOPMENT OF EXPERIMENTAL PROTOCOLS 46	
7.5.	 EVALUATION OF PRIME-VR2 PLATFORM INTERFACE 48	

8	 CONCLUSION 49	

9	 REFERENCES 50	

10	 APPENDIX 50	
10.1.	 PRIME-VR2 GAMEPLAY API 50	
10.2.	 SUMMARY 50	
10.2.1.	 TAG: GAMEPLAY 50	
10.2.2.	 TAG: FILE 50	
10.2.3.	 TAG: AUTH 50	
10.3.	 SECURITY 51	
10.3.1.	 AUTH_SVC 51	
10.4.	 PATHS 51	
10.4.1.	 GET /FILES/{FILEID} 51	
10.4.2.	 GET /GAMEPLAY/GAMES 51	
10.4.3.	 GET /GAMEPLAY/GAMES/{GAMEID}/PATIENTS/{PATIENTID}/CONFIGURATION 51	
10.4.4.	 POST /GAMEPLAY/SESSIONS 52	
10.4.5.	 POST /LOGIN 52	
10.4.6.	 GET /PROFILE/ME 52	
10.5.	 SCHEMA DEFINITIONS 52	
10.5.1.	 AUTHDATA: OBJECT 52	
10.5.2.	 AUTHLOGINOBJECT: OBJECT 52	
10.5.3.	 GAMELISTITEM: OBJECT 52	
10.5.4.	 GAMEPLAYSESSIONINPUTMODEL: OBJECT 53	
10.5.5.	 GOALS: OBJECT 53	
10.5.6.	 USERGAMECONFIGURATION: OBJECT 53	

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 5

VERSION HISTORY

COMMENTS RESPONSIBLE VERSION DATE
First draft Gabor Vadasz 1.0 16/09/2021
Review of the first draft Philip Farrugia 1.0 22/09/2021
Final version Gabor Vadasz 1.0 25/09/2021

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 6

EXECUTIVE SUMMARY

The Integrated Prototype Demonstration of the PRIME-VR2 platform contains detailed
information on the work the WP6 team achieved in the recent period.

Besides explaining the technical background used for the implementation of the Web Platform,
the Unity SDK and the Games, this deliverable provides more information about the achieved
performance metrics and validation criteria.

Deliverable 6.3 is the result of the discussion of all the technical challenges of the project made
by WP6 members. Discussions were extremely important to define the initial list of business
and technical requirements for the overall Platform, and for each single component. The three
Platform components have been detailed in this document: Web Platform, VR Ecosystem, and
Rehabilitation Games.

Web Platform

This deliverable contains detailed information on the technical background used for the
implementation of the Web Platform, including reasons for the selected technology stack. A
detailed description is provided on the software components used and on the Cloud
infrastructure, together with the deploying process.

VR Ecosystem

The VR ecosystem consists of the Unity SDK, Platform Loader, and the VR games. This
deliverable contains detailed information regarding the integration of the Platform Loader and
the VR games with the use of the Unity SDK.

Results achieved in WP6 till M24

• Submission of deliverable D6.1 Platform Implementation Plan

• Communication and management software and routes were discussed and agreed on

• 7 focus group meetings have been organised to collect users’ stories

• Definition of the requirements of the PRIME-VR2 Web Platform

• Completion of the specification of the PRIME-VR2 Web Platform and its functionalities

• Definition of the PRIME-VR2 Web Platform design mock-ups, including the modules
and communications, with the definition of use cases and scenarios of interaction
among the components

• 22 meetings for WP6 team have been organized for discussing the platform
implementation plan

• Creation of Web Platform functional and technical documentation.

• Presentation of the coding Guidelines to the team to suggest changes and guidelines

• The Unity SDK functionality has been abstracted into a set of separate modules that
will be used as technological standard (platform loader, service module, game module,
controller input module)	

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 7

1 INTRODUCTION

1.1. Terminology

Term Meaning

Game Engine A game engine is a software-development environment designed for
people to build video games. Developers use game engines to
construct games for consoles, mobile devices, and personal
computers.

Unity3D Unity is a cross-platform game engine.

Unity SDK A software development kit (SDK) is a collection of software
development tools in one installable package. They ease the creation
of applications by having compiler, debugger and possibly a software
framework.

Web Portal Web Portal is a web application that coordinates the activity of hospital
supervisors, doctors and patients in order to achieve successful VR
therapy outcomes.

API An Application Programming Interface (aka API) is an interface or
communication protocol between different parts of a computer
program intended to simplify the implementation and maintenance of
software. An API may be developed for a web-based system,
operating system, database system, computer hardware, or software
library.

API Key A special string that is functioning as a secret password between the
API and the API caller. This secures the API so unauthorized calls
would not be processed and can help to prevent data leakage.

REST Representational State Transfer (REST) is a software architectural
style that defines a set of constraints to be used for creating Web
services or API. Web services that conform to the REST architectural
style, called RESTful Web services, provide interoperability between
computer systems on the Internet.

JSON JSON (JavaScript Object Notation) is a lightweight data-interchange
format. It is easy for humans to read and write. It is easy for machines
to parse and generate. It is based on a subset of the JavaScript
Programming Language Standard ECMA-262 3rd Edition - December
1999. JSON is a text format that is completely language independent
but uses conventions that are familiar to programmers of the C-family
of languages, including C, C++, C#, Java, JavaScript, Perl, Python,
and many others. These properties make JSON an ideal data-
interchange language.

User User is a person who has some level of access in the system. The
user interacts with the system and get results based on permissions.

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 8

User Account /
Profile

The User Account / Profile contains personal (e.g.: Name, Email) and
non-personal information (e.g.: UserID, Group, Permissions) about
the User.

Group A Group is a logical set of Users. It has a Group Name and a Group
can have a special set of permissions what defaults to all Users who
are included in the Group.

Permission All available operations in the system and whether different user types
can perform them.

Authentication The Authentication is the process when the system checks the User’s
credentials. This is a gatekeeper to secure the system from unwanted
access. This is mostly happening when the User logs in or getting
back to the system after a while.

Authorization The Authorization is the process when the system checks the User’s
permissions. This is a gatekeeper to secure the system from
unwanted access. This happening at every API call.

JWT JSON Web Tokens are an open, industry standard RFC 7519 method
for representing claims securely between two parties (mostly between
client and backend or backend and backend communications). Built
on top of JSON.

C# C# is a general-purpose, multi-paradigm programming language
encompassing strong typing, lexically scoped, imperative, declarative,
functional, generic, object-oriented, and component-oriented
programming disciplines. Developed and maintained by Microsoft.
Developers using C# to develop a Unity3D application.

NodeJS Node.js is an open-source, cross-platform, JavaScript runtime
environment that executes JavaScript code outside of a browser.

Container A Container is a standard unit of software that packages up code and
all its dependencies, so the application runs quickly and reliably from
one computing environment to another.

Containerization is the process when an application is packaged
together as a container to be able to run in a virtual environment.

Docker Docker is a set of platforms as a service products that use OS-level
virtualisation to deliver software in packages called containers.
Containers are isolated from one another and bundle their own
software, libraries, and configuration files; they can communicate with
each other through well-defined channels.

Kubernetes Kubernetes is an open-source container-orchestration system for
automating application deployment, scaling, and management. It was
originally designed by Google and is now maintained by the Cloud
Native Computing Foundation.

Version Control A component of software configuration management, version control,
also known as revision control or source control is the management

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 9

System of changes to documents, computer programs, large web sites, and
other collections of information.

2 TECH STACK

2.1. Programming Language
There is a wide variety of programming language available today. Older and more robust ones
like C / C++ and newer ones like C#, NodeJS, Go which provides better solutions for today’s
coding problems (async, multi-threading, heavy network communications). There is no ideal
programming language, but some are better than others when facing specific challenges. With
a monolithic approach, the developer chooses only one programming language which is used
exclusively in the whole software package. Another hallmark of monolithic approaches is that
all is contained in one software package. In polyglot programming the developer has the
freedom to write different parts of the software in different languages. This way the developer
can leverage most of the benefits of each language. A danger of polyglot approaches is that
the codebase becomes fragmented in many different languages and requires a variety of
skillsets to maintain.

In the PRIME-VR2 project the polyglot approach was chosen but limiting the number of
languages to a small set: C#, NodeJS. For certain heavy data and network traffic handling,
using the language Go language is possible in the future.

C# is developed and maintained by Microsoft. Because it is wide adoption in education it is
easy to find a C# developer in any seniority level. Also, the chosen game engine, Unity3D
using C# as its main programming language.

NodeJS is a free, open-source language built on top of Javascript. One of the ideas behind
the language is to reuse the front-end web knowledge when developing the backend. Most of
the web programmers know how to code in Javascript. This makes it easier to find developers
and maintain the code base. Javascript also has a huge online community, which makes
finding answers and solutions easy.

Go is an open source, compiled and statically typed programming language developed and
maintained by Google. The main goal is to reach the C++ performance but without the
difficulties what C++ could mean. Go is only a few years old language, but it is gaining
popularity(https://trends.google.com/trends/explore?date=all&q=golang,
https://opensource.com/article/17/11/why-go-grows,
https://blog.jetbrains.com/go/2021/02/03/the-state-of-go/). It is offering a simple syntax, a fast
compiler and supports concurrent programming from the very beginning.

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 10

3 UNITY SDK

3.1. Introduction

This section further describes the integration of the PRIME-VR2 Unity SDK as described in
deliverable 6.1. This section will go into detail about the implementation of the SDK and how it
is integrated to establish a connection between the Platform Loader, VR Games, and the
backend. Figure 1 depicts this implementation.

Figure 1 – Unity SDK integration with backend and VR games

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 11

3.2. Platform Loader	

The platform loader is an application used to handle the user authentication and game
management. The platform loader is our distribution platform to ensure each user can
download and install the games assigned to them. The platform loader can be downloaded
from the web portal as shown in Figure 2.

Figure 2 – Web portal Platform Loader download location

Users can log in through the platform loader by using a login screen. A temporary user token
is locally stored for the logged in user to be used within the VR games. This token is used to
retrieve the list of games that are assigned to the user as shown in Figure 3.

Figure 3 – Login and Game selection screens

The users can select one of the games assigned to them and download/install the VR game
application. Once the VR game is set up for use, the user can run it through the platform loader.
As shown in Figure 4, the platform loader feeds the token to the VR game through the Prime-
VR2 Unity SDK when a user runs the VR game. This token can be used within the VR games
to authenticate future calls to the backend to retrieve or save data relevant for the backend.

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 12

Figure 4 – Platform Loader flow

3.3. VR games
To retrieve or send the progress of the current user, there first needs to be a connection
established within the VR game with the backend. This can be done through the
GameplaySessionController.cs class. The SDK has an example scene, “post-
gamesession.scene”, showcasing the usage of this class. When the
GameplaySessionController is initialized, it will establish a connection with the current user
token which has been received from the platform loader. The GameplaySessionController has
events which the VR game can listen to to handle any necessary logic when they are triggered.
These events are necessary to process data like user progress or required exercise duration.
The following list is a brief overview of the available events.

Event name: OnInitialized
Event description: This event is invoked right after the SDK is done initialization. This includes
the logging in of the current active user.

Event name: OnConfigJsonSchemaReceived
Event description: This event is invoked right after the SDK has received the raw data
containing the configuration set up for the current user and the current VR game. This is useful

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 13

to process custom logic required for the VR game which the SDK could not predict beforehand
because of the customisable nature of the VR game. For example, if an exercise has a specific
scoring or measurement logic, like holding a pan stable for a certain amount of time, a variable
‘held_pan_stable’ can be set up for a specific game. This data is sent as raw data from the
backend and exposed through the Unity SDK for the VR game environment. Storing custom
data would not be useful for quick development iterations and therefore we have chosen to
expose the raw data to ensure the VR games can go through quicker iteration cycles.

Event name: OnConfigProcessed
Event description: This event is fired right after the SDK has received the raw data containing
the configuration setup for the current user and the current VR game and has processed this
raw data into usable default data models setup by the SDK. These data models include
information regarding the progress of the user and the custom configuration for the user.

Event name: OnUserInfoProcessed
Event description: This event is fired right after the user has logged in and their profile has
been loaded. This is useful to display personalised information, like nickname, when displaying
the progress of the user within the VR game.

Event name: OnGameDetailsProcessed
Event description: This event is fired right after the personal game details have been retrieved
and processed. The personal game details contain information like recommended playtime
and sessions per week and the goals. This is useful to display this kind of information for the
user within the VR game to ensure the user has a clear indication of the amount of time they
need to spend on exercises.

3.4. Backend
The VR games are set up on the web portal with the use of configurations. These custom
configurations decide what kind of settings and progress can be made for each VR game.
The SDK contains default data models for these configurations with the option to add custom
data models for the customized VR games.
The SDK allows data to be updated once the user has achieved a certain milestone or any
progress at all within the VR game. This is accomplished by cumulatively adding the necessary
data throughout the VR game session, and finally sending it to the backend. The
GameplaySessionController.cs has a variety of functions available for this. Below is a list of
some of the functions which we expect to be used the most.

Function: AddAchievement
Parameters: AchievementData
Returns: nothing
Logic: Adds the achievement which has been unlocked by the user and aggregates it into a
list, preparing it to be sent to the backend.

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 14

Function: AddScore
Parameters: int/number
Returns: nothing
Logic: Adds the score obtained by the user and aggregates it into a list, preparing it to be sent
to the backend.

Function: AddDuration
Parameters: int/number
Returns: nothing
Logic: Adds the duration which the user has spent within the VR game and aggregates it into
a list, preparing it to be sent to the backend.

Function: AddGameplaySessionInputVariable
Parameters: GameplaySessionInputVariable
Returns: nothing
Logic: Adds the GameplaySessionInputVariable (which is a custom definition for each VR
game containing any kind of useful score, progress, feedback, difficulty setting) for the user
and inserts the value so that it can be aggregated into a list and prepared to be sent to the
backend.

On top of the above functions, the GameplaySessionController has a variety of Get and Set
functions and properties available for ease of use for developers. The full functionality can be
found within the code documentation.

Once the user is done with an exercise the GameplaySessionController.PostSession function
can be used to send all of the aggregated data to the backend so that it can be displayed in
the web portal. This includes progress reports and charts which have been setup in a custom
manner for each VR game. The web portal will then display the received data in the predefined
format for each specific VR game.

4 GAME IMPLEMENTATION

4.1. Introduction
As documented in D6.1, the work done in Phase 1 encompasses the discovery phase around
the needs of the living labs within the consortium. This involved multiple brainstorming
sessions to determine the ideal environment scenarios where patients will eventually play the
rehabilitative games in virtual reality as part of the VRHAB-IT platform. This phase led Flying
Squirrel Games ltd., to the identification of 10 scenarios which were followed up with a written
description of each, conceptualised in art form to determine layouts, views, scales and
activities within each of these unique places. A video recording for each of these game
scenarios can be seen here1.

1	https://tinyurl.com/primevr2-scenarios	

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 15

Later on, each of these was 3D modelled and shown to stakeholders within the consortium to
gather feedback specifically from WP7, make the necessary changes and eventually
demonstrate as navigable areas in virtual reality. A short-listing selection process started
earlier this year with 2 living labs choosing their environment scenarios for the following
selection of mini-games.

KNRC chose the Crafts room and the Greenhouse concepts which were then merged into a
single environment hosting the first game in that environment called ‘Garden Master’ (see
section 4.3.3). STJH chose the Sports arena as their first environment which led to the
development of Splatorama (see section 4.3.1), Shape Shifter (see section 4.3.2) with other
mini-games in progress (see section 4.4). GDIH are still awaiting ethics approval by the time
of writing but clinicians within this particular living lab have already indicated their need for
games that help with improving the quality of life in daily functions in a kitchen environment.
This led to the development to Steady Hands (see section 4.3.4).

Several other simple activities were prototyped as a showcase to GDIH and to support the
development of the be-spoke controller design. These were only used for demonstration
purposes and hence they will not be listed with the 4.3 mini-games section below. The most
noteworthy ones to mention here are the water carrying demoes (Figure 6), the stacking dice
in cup and the freewriting with white board markers at the office environment (Figure 5).

Figure 5 - Writing at office2

2	https://tinyurl.com/writingatoffice	

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 16

Figure 6 -Liquid test3

4.2. Game vs Exercise matrix
The following matrix shows the exercise focus areas for the games described in the following
sections. The matrix highlights the primary focus in dark green, the secondary area in lighter
green and the unused areas in light blue. As the bespoke controllers evolve, Table 1 is being
updated to match these capabilities. For instance, the Garden Master game is meant for post-
stroke patients through the KNRC Living Lab. At the time of writing, this game is being updated
so it can be played using the wrist module as well as the finger module (separately). The same
applies to Splatorama.

Table 1: Game vs Exercise matrix

Game Shoulder Elbow Wrist
flexion

Wrist
extension

Fingers

Splatorama (STJH)

Shape Shifter
(STJH)

Garden Master
(KNRC)

Steady Hands
(GDIH)

Basketball (STJH)

Mini-Golf (STJH)

Petanque (KNRC)
Rhythm in the
Kitchen (GDIH)

Legend:
Primary

Secondary

Not used

3	https://tinyurl.com/liquidTest	

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 17

4.3. Phase 2 - Mini games

4.3.1. Splatorama
This mini-game sets the Player in a virtual target shooting range set in a forest diorama inside
the Sports Arena. Armed with a hypothetical paint-blob-firing blaster gun the Player is tasked
with hitting as many cardboard cut-out animals as possible as they pop in and out of the
immediate view.

The Player’s blaster can shoot paint in two colours: orange and blue - only targets hit with the
matching colour paint will register as hit. This information is relayed to the player in a brief
tutorial before the game starts as seen in Figure 8. The Player will thus have to prioritize which
targets to hit as well as to hit them with the corresponding paint colour (see Figure 9 and Figure
10). Aiming is done by moving the arm and flexing/extending the wrist to determine the colour
of the paint being projected.

Each session has a predefined set of targets that appear in different placements and exist for
a definite amount of time before disappearing to make way for the remainder of targets in the
set. The session ends when the last target has expired or has been taken down. The exception
to this rule exists in Easy Mode where targets will not expire until they are hit by the Player. In
this manner, progress through the targets is governed by the Player’s natural pacing. With
respect to the other games available, Splatorama differentiates itself as one of the most
challenging ones, in part because the Player can never tell what patterns and colours the
targets will have.

The game can be configured in a number of ways:

1. Number of sessions per week	
2. Number of targets per session (defined by pre-sets rather than perfectly granular)	
3. Allow targets to expire / hold targets until knocked down by player	
4. Speed of targets	
5. Target hit-points amount	

The following data can be stored and visualised on the VRHAB-IT platform as seen in Figure
7

1. Time taken for Player to complete whole session	
2. Total number of shots from player	
3. Hit versus Miss shot ratio (accuracy)	
4. Hit versus Miss shots for correct target colour	
5. Targets missed (applies only when targets expire)	

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 18

Figure 7 - Sample player data as seen on the VRHAB-IT platform.

Difficulty:

The difficulty of this mini-game hinges on two factors: the speed at which the targets move and
the time for which they remain visible before popping back down. As such the difficulty modes
are:

1. Easy: Target movement speed at 50%, targets remain visible until hit	
2. Medium: Target movement speed at 100%, targets remain visible until hit	
3. Hard: Target movement speed at 100%, targets disappear after a few seconds	
4. Pro: Target movement speed at 150%, targets disappear after a few seconds

	
Scoring:

Consistent across all mini-games, at the end of a session a score from 1 to 100 is given to the
Player. The final score considers primarily the amount of good hits versus the total hits fired
(the time taken to clear a session is not factored in).

Figure 8 - Tutorial mode

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 19

Figure 9 - Blue paint

Figure 10 - Orange paint.

Splatorama footage is available for sample gameplay4 and the introductory tutorial5.

4.3.2. Shape Shifter
In this mini-game in the Sports Arena, the Player is presented with a set of predefined 3D
shapes that represent a line path through 3D space. The objective is to have the Player trace
his hand through the path as accurately as possible, the action is akin to tracing a gesture with
the controller-mounted hand. This shape can be fairly planar or it can wrap around the facing
hemisphere of the Player.

Each gesture shape has a starting and an end point. Tracing begins by positioning the hand
where the shape begins and as the hand starts to follow the projected path the shape starts
taking form. Should the tracing stray too far from the projected path then the Player is allowed
to resume from his/her last known good position. Alternatively, an easy variant of the game

4	Link:	https://tinyurl.com/splatoramaGameplay	

5	Link:	https://tinyurl.com/splatoramaTutorial	

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 20

exists for beginner Players to get accustomed to - in this mode the Player is allowed to trace
the shape in any order irrespective of beginning and end. Information on how to play is
conveyed to the player at the start of the session through a voice over clip.

Gameplay is split into sessions, where each session consists of a set of gestures that the
Player has to trace and follow as accurately as possible. A gesture is considered complete
once it has been traced from start to finish. Similarly, a session is complete when every gesture
in the set has been completed. There are currently 8 distinct gestures with the possibility of
adding more complex gestures in the future. Furthermore, this number can be multiplied when
gestures are rotated and/or mirrored, where applicable.

The game can be configured in a number of ways:

1. Sessions of games per week	
2. Number of shapes per session	
3. Minimum distance from path for input to be valid 	
4. Size of brush	
5. Difficulty sets of shapes (complex shapes inherently more difficult to trace)	
6. Use Continuous or any-sequence style shapes	

The following data can be stored and visualised on the VRHAB-IT platform as seen in Figure
11

1. Time taken for Player to complete the whole session.	
2. Number of times tracing was broken due to over threshold, per shape	
3. Accuracy: measure of how close the hand position was to the midpoint of each shape

joint, per shape/session cumulative	

Figure 11 - Sample player data as seen on the VRHAB-IT platform.

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 21

Difficulty:

There are 4 difficulty modes, each based on a combination of brush sizes and whether or not
a shape’s path needs to be traced continuously from beginning to end as can be seen in
Figure13, Figure 14 and Figure 15. The modes are:

1. Easy: Fill all shapes in any given sequence using Normal brush size	
2. Medium: Fill all shapes in any given sequence using small brush size	
3. Hard: Fill all shapes continuously starting from Green to Red markers (Normal brush

size)	
4. Pro: Fill all shapes continuously starting from Green to Red markers (Small brush size)	

Scoring:

Scoring is based on two primary factors: time taken to clear a given sequence and the hit/miss
ratio of shape segments (note that the concept of a ‘miss’ does not exist in Easy and Medium
difficulty modes). For each session this data is processed through a formula to produce a final
score from 1 to 100. A Rank (from A to D) is associated with ranges on the final score and
presented to the Player at the end of a session. Working examples and tuneable values to
adjust difficulty levels for this can be seen in Figure 12 and are available on this spreadsheet6.

Figure 12 - Workings and samples of typical game play scenarios.

6	Link: https://tinyurl.com/shapeShifterExamples	

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 22

Figure 13 - Wave shape with start and end point

Figure 14 - Spiral with start and end point

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 23

Figure 15 - Shape that requires reaching out in three dimensions

Shape Shifter footage is available for the Tutorial7, Medium8 and Hard9 modes.

4.3.3. Garden Master
This mini-game is set in a gardening environment where it requires the Player to carefully
water and grow a set number of plants until they flourish. Watering the plants is done via a
water hose which can be picked up by the Player and directly aimed at patches of land
containing the seeds that will eventually grow into plants when watered.

As plants are watered, they gradually begin to grow. Each plant displays its own ‘water reserve
meter’ indicating how much water it currently has on its dirt patch. The meter also shows an
ideal level of water that results in optimal growth (labelled in green) as can be seen in Figure
19: below this level results in poor growth (labelled with neutral colour) while above it (labelled
in red) will result in no growth at all. The idea is thus to manage water such that all plants are
kept happy and growing optimally.

To water the plants the Player must not only aim the water hose (see Figure 18) using general
arm positioning but also use flexion/extension of the wrist/finger motions to maintain water
pressure so as to be able to keep watering the plants. The drop in water pressure is indicated
by the range of the water jet, the Player will not be able to water the plants further back without
producing a few pumping motions.

Each session contains a predefined number of plants that the Player will need to grow during
that session. There are 5 patches of land, 2 in close proximity to the Player while the remainder
a step further away, with each patch hosting one plant seed. Once a plant is grown to its full
extent it is removed from the patch and replaced with the next seed in the list. Once all

7 Link: https://tinyurl.com/Shape-Shifter-Tutorial
8 Link: https://tinyurl.com/Shape-Shifter-Medium-Mode

9 Link: https://tinyurl.com/Shape-Shifter-Hard-mode	

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 24

seeds/plants have been grown the session is complete and the Player will be presented with
his overall performance and score on a virtual billboard as seen in Figure 20.

The game can be configured in a number of ways:

1. Number of sessions per week	
2. Number and type of plants per session	
3. Amount of pressure added with each flexion/extension motion	

	

The following data can be stored and visualised on the VRHAB-IT platform as seen in Figure
16

1. Time taken for Player to complete session	
2. Time taken for each plant to grow	
3. Hit versus miss on all plants (cumulative)	
4. Number of flexions/extensions performed	

Figure 16 - Sample player data as seen on the VRHAB-IT platform.

Difficulty:

The difficulty of this game is primarily governed by the plant’s water reserve meter’s red, green
and neutral zones. As a plant is watered the amount of water that plant currently has is
represented by a blue bar in the meter. This bar gradually drops as water is absorbed by the
plant to grow. Having the water bar in any colour region except for green will not optimally grow
the plant, therefore the difficulty curves alter how difficult it is for the Player to keep the water
bar in the green region. Higher levels of play make it more difficult to grow the plant optimally
by shrinking the green optimal zone while increasing the red zone.

• Easy: 	
• Red zone range: 10-20%	
• Green zone range: 50-80%	
• Number of plants to grow: 3

	
• Medium:	

• Red zone range: 15-30%	

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 25

• Green zone range: 40-70%	
• Number of plants to grow: 4

	
• Hard: 	

• Red zone range: 20-40%	
• Green zone range: 30-60%	
• Number of plants to grow: 4

	
• Pro:	

• Red zone range: 30-50%	
• Green zone range: 20-50%	
• Number of plants to grow: 5

	
Scoring:
The Player is rewarded for being consistent and watering the plants in their optimal green zone
while avoiding leaving the plants too dry (neutral zone) or over-watered (red zone). Thus, the
main criteria behind scoring the player’s performance is the time spent on each of these zones.
For each plant the total amount of time spent on each zone is summated and normalized to
produce a weighted percentage. This information is presented to the Player at the end of the
session in the form of a pie chart (see figure xxx). Finally, the final score is calculated as the
average of all the weighted averages from all the plants. More detailed score workings and
examples can be found in Figure 17 and on this spreadsheet10.

Figure 17 - Workings and samples of typical game play scenarios.

Figure 18 - Start watering the plant

10	Link:	https://tinyurl.com/gardenMasterExamples	

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 26

Figure 19 - Watch the meter goes to ‘Green’

Figure 20 - End of session results view

Gameplay footage is available for Pro Mode11 and the Tutorial12.

4.3.4. Steady Hands
Set in the Kitchen environment, this mini-game is set to challenge the Player’s dexterity and
cognitive skills. The game revolves around having the Player handle a slippery, medium-sized
plate in an attempt to balance edible objects of different shapes (see Figure 21 and Figure 22)
before finally tilting the plate one way or another such that the object falls into the appropriate
category container.

When the Player positions the plate in a predetermined location an edible object will spawn
some distance above and land on the plate, he/she is holding. Initially objects are ‘blacked out’
such that only their silhouette can be inferred. However, upon touching the plate the edible

11	Link:	https://tinyurl.com/gardenMasterProGameplay

12	Link:	https://tinyurl.com/gardenMasterTutorial	

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 27

object starts taking colour such that after a matter of few seconds its identity should be able to
be determined easily. The remaining action for the Player then is to tilt the plate left or right
such that the item in question falls into its appropriately labelled container; for example: Fruits
versus Nuts. Items that land outside the correct containers count as a miss. The cycle repeats
itself with the Player being required to reposition the plate to a predetermined position so the
next item can be spawned.

Each session contains a set of edible objects of which they fall into exactly either of two
categories. The session ends when the last edible object in the sequence has been spawned
and has either landed in one of the containers or on the counter.

The game can be configured in a number of ways:

1. Number of sessions per week	
2. Number of objects per session	
3. Number of groups per session (default min: 2)	
4. Time to completely reveal edible item	
5. Difficulty (Sensitivity, Friction, Size of plate)	

	

The following data can be stored and visualised on the VRHAB-IT platform as seen in Figure
23

1. Time taken for each session	
2. Hit vs miss items sorted	
3. Overall score	

Figure 21 – Balancing a tomato (round shape object – hard mode)

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 28

Figure 22 - Balancing a banana (Easy mode)

Figure 23 - Sample player data as seen on the VRHAB-IT platform.

4.4. Games under development

4.4.1. Mini Golf
The premise of this game within the Sports Arena (STJH) is precisely what its real counterpart
entails: a relaxing outing across a compact, yet challenging, set of mini-golf courses practice
session. The objective is simple: to ‘hole’ the golf ball using as few swings as possible. For a
total of 9 courses, each course grows progressively more complex than the previous one,
featuring slopes, sand traps and other staples of this sport.

In keeping the gameplay as simple in scope as possible, the Player can only swing one type
of club: the putter, and can swing for an unlimited number of tries. To accommodate Players
of different physical abilities, swinging the putter can be assigned to the shoulder movement
or elbow movement.

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 29

Because the courses are relatively small (see Figure 26), the amount of force needed to hit
the ball is still realistic (see Figure 24 and Figure 25) when factoring non-traditional input
methods such as elbows and wrists. This means that the therapeutic focus of this game is to
exercise wrist flexion and extension in order to get the precise power need for each shot.

The difficulty for this game varies the par value for each course, with higher difficulties lowering
the par such that fewer shots are allowed to put the ball before the Player goes over par. The
score takes into account all shots performed and determines the overall grade achieved.

Figure 24 – Precision shot

Figure 25 – Direction of shot

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 30

Figure 26 - Sample gameplay from a few of the 9 available courses.

4.4.2. Basketball
A real-life single-player practice scenario is being built in the Basketball court for STJH (see
Figure 27). This game is established within the Sports Arena and is meant to exercise the
shoulder and wrist using the bespoke controller with the wrist module attached.

Basketball balls are picked up from different spots around the court (see Figure 28 and Figure
29) and the action for the player is to use the shoulder/elbow combo to aim in the right direction
while extending and flexing the wrist to get that power control according to the distance from
target. In the easier levels, a parabola line will be shown to guide the player on the power and
aim requirement as an aid. In harder levels, the aim guide is removed, and the balls are further
away from the target hoop. The player may try as many attempts as possible to make the
basket and may also move to other throwing spots and re-visit a tricky one at a later time.

The number of attempts as well as the accuracy for each shot are considered when scoring
the final result for the session.

Figure 27 – Basketball court in Sports Arena

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 31

Figure 28 – Far left shot

Figure 29 – Under the hoop shot

4.4.3. Petanque
The last mini-game planned for STJH within the Sports Arena is Petanque (see Figure 30). In
this game the focus is once again on wrist movement combined with gross motor movement
of the shoulder and elbow to get the general aim. This game is played using the bespoke
controller with the wrist module attached.

General aiming direction is set through the shoulder and elbow while the power control is set
according to the wrist extension amount and the resistance set on the controller itself. A simple
AI NPC will play along this game to keep the session interesting until the best player wins. The
number of mistakes committed by the AI may be fine-tuned according to the difficulty level set
by the therapist.

The resistance band on the bespoke controller should also be set to match the weight of a
petanque ball which could be anywhere between 650 and 800g. This will help with
strengthening through resistance while giving the game a more accurate real-life experience.

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 32

Figure 30 - Petanque

4.4.4. Rhythm in the kitchen
Reference has been made to popular rhythm games like Beat Saber13 by GDIH and how these
games are not playable by patients with Dystonia even through the use of assistive controllers.
The concept here builds on top of the games referenced below where players will be asked to
use their HMD to ’look’ at objects around the room and perform simple quick time events
(QTEs) using very gross motor movement to score better in the game. The 3 referenced
games below in Figure 31, use this gesture mechanic to make progress in the game.

These actions may include:

1. Reach the ceiling	
2. Touch the floor
3. Stretch Left
4. Stretch Right
5. Draw gestures in the air

Another variation (harder level) of the game will ask the players to perform the above actions
but toward objects in the room, therefore the player must first locate this item, then perform
the QTE at the right direction.

An MVP of this game will be developed and tested with dystonic patients because as the living
labs duly noted, none of this has been tested before, so literature or other documented studies
are not available. The plan is to test this out with clinicians first, then followed by real patients
to gather feedback through WP7 and adjust accordingly.

13	https://store.steampowered.com/app/620980/Beat_Saber/	

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 33

Castlevania: Dawn of Sorrow
(Konami/Nintendo DS, 2005) -

asks the player to draw a particular
shape with the stylus to defeat

milestone bosses.

Darklings (MildMania/iOS,
2013) - relies on the player

making gestures on the touch
screen to strategically defeat
the enemy monsters around

the player’s avatar.

Super Mario Party
(Nintendo/Switch, 2019) - “Looking
for love” asks the player to use the
joystick to look at the given shape
in any location up/down/left/right.

Figure 31 - Reference games with similar quick time events.

5 WEB PLATFORM

5.1. Introduction

The PRIME-VR2 Web Portal is a web application that coordinates the activity of hospital
supervisors, doctors, and patients to achieve successful VR therapy outcomes.

The system consists of two main functional units:

● Web portal: A human-friendly user interface where users can interact with the system.

● Gameplay API: A machine-friendly API that games can use to query configuration
options and upload gameplay data.

5.2. SELECTED TECHNOLOGY STACK

As stated in deliverable D6.1 KRL considered different languages and technologies to create
a robust, future proof back-end and front-end for the PrimeVR2 Web Platform.

The technology requirements for the Web Platform:
1. Meets the complex requirements of Prime-VR2 and gives a great user experience
2. Scalable, when it comes to commercialisation the tech stack could handle hundreds,

thousands, or tens of thousands of users. Further development, optimisation and tweaking
will be needed, but the tech stack carries the possibility to scale up if needed.

3. Popular, open-source technologies, that makes it easier to hire developers for future
improvements

4. Future proof, the underlying technology will be maintained and developed in the upcoming
years

5. Easy to maintain, cost effective to create updates, new features.

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 34

5.2.1. Runtime Environment: NODEJS
Node.js is an open-source, cross-platform, back-end JavaScript runtime environment that
runs on the V8 engine and executes JavaScript code outside a web browser. Node.js allows
developers use JavaScript to write command line tools and for server-side scripting—running
scripts server-side to produce dynamic web page content before the page is sent to the user's
web browser. Consequently, Node.js represents a "JavaScript everywhere" paradigm,
unifying web-application development around a single programming language, rather than
different languages for server-side and client-side scripts.

Programming Language: TYPESCRIPT

TypeScript is a “strongly typed” programming language which builds on JavaScript giving you
better tooling at any scale.

JavaScript (also known as ECMAScript) started its life as a simple scripting language for
browsers. At the time it was invented, it was expected to be used for short snippets of code
embedded in a web page — writing more than a few dozen lines of code would have been
somewhat unusual. Due to this, early web browsers executed such code pretty slowly. Over
time, though, JS became more and more popular, and web developers started using it to create
interactive experiences.

Web browser developers responded to this increased JS usage by optimising their execution
engines (dynamic compilation) and extending what could be done with it (adding APIs), which
in turn made web developers use it even more. On modern websites, average browsers are
frequently running applications that span hundreds of thousands of lines of code. This is long
and gradual growth of “the web”, starting as a simple network of static pages, and evolving into
a platform for rich applications of all kinds.

More than this, JS has become popular enough to be used outside the context of browsers,
such as implementing JS servers using node.js. The “run anywhere” nature of JS makes it an
attractive choice for cross-platform development. There are many developers these days that
use only JavaScript to program their entire stack.

5.2.2. Package Manager: NPM

NPM is one of the world's largest software registries. Open-source developers use npm to
share and borrow packages, and many organisations use npm to manage private development
as well.

5.2.3. Framework: ANGULARJS

Angular is a development platform, built on TypeScript. As a platform, Angular includes:

! A component-based framework for building scalable web applications
! A collection of well-integrated libraries that cover a wide variety of features, including routing,

forms management, client-server communication, and more
! A suite of developer tools to help you develop, build, test, and update your code

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 35

With Angular, one takes the advantage of a platform that can scale from single-developer
projects to enterprise-level applications. Angular is designed to make updating as
straightforward as possible, so it exploits the latest developments with a minimum of effort.

Above all, the Angular ecosystem consists of a diverse group of over 1.7 million developers,
library authors, and content creators.

5.2.4. Asset Bundling: WEBPACK

Webpack is a static module bundler for JavaScript applications. This enables the developers
to take a fully dynamic application and package it into static files, which can be uploaded and
deployed to the server.

The webpack gathers all the application’s dependencies, which includes not just code, but
other assets as well, and generate a dependency graph. By a bundler like webpack one can
make sure that every software component is prepacked and shipped within the bundle.

5.2.5. Containerization: DOCKER

Docker is an open platform for developing, shipping, and running applications. Docker enables
developers and DevOps to separate the applications from the infrastructure so they can deliver
software quickly. With Docker, DevOps can manage your infrastructure in the same ways they
manage the applications. By taking advantage of Docker’s methodologies for shipping, testing,
and deploying code quickly, one can significantly reduce the delay between writing code and
running it in production.

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 36

5.3. SOFTWARE COMPONENTS

The D6.1 describes the PRIME-VR2 Web Portal as a web application that coordinates the
activity of hospital supervisors, doctors, and patients in order to achieve successful VR therapy
outcomes. Two main functional units was defined: Backend / API and Frontend (Website)

During the implementation phase new components become individual parts of the solution,
such as Data Transfer Objects (DTO), Auth Service and the File Service. KRL decided to split
the functionalities into micro services. Each service contains only a subset of features based
on its scope and role in the project. For example, every functionality that is tied to
authentication and authorization was implemented in the Auth Service. Everything about file
upload, storage management was implemented in the File Service. In broad these are parts of
the backend and API but implemented as a separate application, to make it easier to maintain
and separate the responsibilities.

5.3.1. Web Platform Backend and API

The Backend and API implements the specification of the following sections that are described
in the deliverable D6.1.

- 5.5 Hospital Management
o Hospital List
o Create Hospital
o Manage Hospital Users
o Edit Hospital

- 5.6 Games

o Games List
o Create Game
o Edit Game
o Disable/Enable Game Globally

- 5.7 Patient Overview

o List of Games
o Goal Review
o Activity Feed
o Game Definition
o Create Session
o Delete Session
o Edit Session
o Leaderboard

The Backend and API does not implement the 5.8 Messaging, 5.9 Notifications due to change
in the project requirements. During the iterations the Living Labs did not require these
proposed features anymore. On the other hand, a more detailed Achievement and Goals
system resulted as a must-have requirement.

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 37

Technology

! NodeJS: server-side JavaScript engine
! TypeScript: statically typed programming language based on JavaScript
! PostgreSQL: relational database engine
! Knex: SQL query builder library, Knex is a JavaScript library that helps programmers write

correct and secure SQL queries by exposing an API that prevents common mistakes.
! AJV (Another JSON Validator): JSON schema validation, AJV is the most popular JSON

Schema validator in the Node ecosystem. The validation performance is great (quicker
than xml schema or other json approaches), well-supported, and its development team
responds quickly to bug reports and security issues.
! Mailjet: email service
! Superagent: HTTP client

Code Structure

For detailed information please check the source code of the project.

! package.json: npm dependencies and scripts
! package-lock.json: locked npm package versions and checksums
! tsconfig.json: TypeScript compilation settings
! knexfile.js: Knex database access options
! Dockerfile: commands and settings for building a Docker image of the project
! index.ts: application entry point
! src/: TypeScript source code
! config/: code that supports reading project configuration
! controllers/: code that defines public API endpoints
! errors/: custom error entities
! helpers/: common utility functions
! migrations/: database version control code
! models/: data entities
! seeds/: database initialization
! services/: common backend code used by controllers
! constants.ts: common constants used across the project

5.3.2. Web Platform Frontend

Technology

! Angular: Single page application framework
! Metronic Framework: theme and style framework for Angular, Metronic is a flexible and

modern theme for the Angular framework. Its flexibility allows customizing the look and feel
of a project to a very high degree.
! Chart.js: chart library, Chart.js is the most popular JavaScript chart library. The charts it

provides are user and developer friendly and highly performant.
! Lodash: utility library

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 38

! Moment: date library
! RxJS: functional reactive utility library, Lodash, Moment and RxJS are industry standard

utility libraries used across the frontend and Node ecosystem.

Code Structure

! angular.json: Angular configuration
! Dockerfile: commands and settings for building a Docker image of the project
! package.json: npm dependencies and scripts
! package-lock.json: locked npm package versions and checksums
! tsconfig.json: TypeScript compilation settings
! tslint.json: TypeScript code quality configuration
! webpack.config.js: deployment configuration
! src/:
! app/: application source code
! core/: common reusable components
! views/: page components and their supporting code
! assets/: static files (images, styles, etc.)
! environments/: configuration options for different execution environments
! lib/: vendored-in libraries

5.3.3. DTO (Data Transfer Objects)

Technology

! NodeJS: server-side JavaScript engine
! TypeScript: statically typed programming language based on JavaScript

Code Structure

! package.json: npm dependencies and scripts
! package-lock.json: locked npm package versions and checksums
! tsconfig.json: TypeScript compilation settings
! tslint.json: TypeScript code quality configuration
! src/: source code of the DTO definitions

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 39

5.4. CLOUD INFRASTRUCTURE & HOSTING

When an IT infrastructure is needed to be set up for a modern web application, there are three
possibilities:

- Traditional On-premises
- IaaS: Infrastructure as a Service
- PaaS: Platform as a Service

The traditional On-premises have the advantage that all the control of the infrastructure is
given locally. In high-security environments this is a must-have.
On the other hand, it means tremendous upfront cost and resources: buying the hardware,
installing operation software, and running the final application. In this case, the owner is in
charge of maintaining everything, this means regular hardware updates, OS and lib patching,
etc.

Besides that, to provide a 24/7 service, there is a need to create a secure environment with a
secure internet connection, which requires a professional server room with temperature and
climate control, failover electrical and communication solutions in place.

Due to the above reasons, this option was not chosen to run the Web Platform components.
The number of costs and efforts (setup and maintenance) in an on-premises environment are
not balanced with the goals of the project.

The second option is called Infrastructure as a Service (IaaS). Most cloud providers give
these by default. Servers, storage, networking, and virtualisation layers are managed by the
cloud vendor. The OS, middleware, runtime, data, and the application layers are managed by
the client. This is a good balance if an application needs a special environment to run within.
Although, the upfront investment into setting up everything and maintaining throughout the
project lifetime is still considered too high for the Prime-VR2 project.

The third option is the Platform as a Service (PaaS). It is still a cloud solution like the IaaS.
But all infrastructure layers (Networking, Storage, Servers, Virtualization, OS, Middleware,
Runtime) are managed by the cloud vendor. That means the provider take care of all the
hardware and software level updates and maintenance (in practice they are buying hardware
components like CPU and memory, HDD, manages changes if something is corrupted without
any outage. This also applies to OS and software level. Operation team at the Cloud provider
updates and manages the software level also). This option gives the fastest time to value and
makes it possible to focus more on the data and application layers than the infrastructure itself.

When the PRIME-VR2 project started, it was decided to go with IaaS within Google Cloud (EU
datacenter). That means KRL created and set up a VPS environment to run the application
containers and the database.

During the implementation phase Google updated their services and introduced a solution
called “Cloud Run”. Cloud Run service makes it possible to develop and deploy highly scalable
containerized applications (applications that are packaged in a container for running on the
server) on a fully managed serverless platform. This seemed to be a much better option,

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 40

because this is a PaaS solution, so the developer can focus on the application and data layers
while the underlying infrastructures are managed and giving a better value to time ratio.

It was decided to change the environment and created a new setup and ported the app to this
new environment (Figure 32).

Figure 32 – Web platform architecture chart

5.4.1. Database
PostgreSQL is a powerful, open-source object-relational database system with over 30 years
of active development that has earned it a strong reputation for reliability, feature robustness,
and performance. Google offers this as a managed, scalable CloudSQL service. This means
all the underlying infrastructure and the security patches automatically keeps updated.

PostgreSQL is widely used, because of its data integrity, extensibility, and the dedication of
the open-source community behind the software to consistently deliver performant and
innovative solutions. PostgreSQL runs on all major operating systems, has been ACID-
compliant since 2001. PostgreSQL comes with many features aimed to help developers build
applications, administrators to protect data integrity and build fault-tolerant environments, and
help you manage your data no matter how big or small the dataset. In addition to being free
and open source, PostgreSQL is highly extensible. For example, one can define his/her own
data types, build out custom functions, even write code from different programming
languages without recompiling a particular database.

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 41

5.4.2. Storage, Google Storage
Cloud Storage is a service for storing blob objects in Google Cloud. An object is an immutable
piece of data consisting of a file of any format. Objects are stored in containers called buckets.

5.4.3. Containerisation
Today’s modern web applications are using containerization. A container is a standard unit of
software that packages up code and all its dependencies, so the application runs quickly and
reliably from one computing environment to another. That solves the long run problem of
different runtimes on dev, staging and production environments that leads to slow and
unreliable deploy processes and hard times with tracking down different bugs. By leveraging
container technology, we can make sure that the same environment and runtime are consistent
through the deploy process and no unexpected errors will happen.

There are several options for containers, like Docker, Rocket or LXC. KRL decided to go with
Docker technology, because this is one of the most common and well supported also by
Google Cloud.

All the components of the web application are containerized and run by Cloud Run service.

5.4.4. Networking & Security
KRL decided to use Google Clouds VPC service because it was deemed suitable when dealing
with health-related data security systems.

VPC is a managed network functionality for the dedicated Google Cloud account. It makes it
possible to create a secure network communication environment within the account.

5.4.5. Cloudflare
Furthermore, it was decided to add a second layer of security for the networking by introducing
Cloudflare into the mix. Cloudflare is a global network designed to make everything one
connects to the Internet secure, private, fast, and reliable. Secures websites, APIs, and
Internet applications. Protect corporate networks, employees, and devices. Cloudflare
provides a secure tunnel between the PrimeVR2 application components and the end user,
while constantly examining the transferred data packets looking for threats and animalities. It
provides an advanced firewall before the application and its runtime environment.

5.4.6. Scalability

If cloud technologies are used well, creating a scalable solution is become relatively easy.
Cloudflare, Google Cloud Run and Store makes it able to PrimeVR2 web platform handle small
or large number of users and traffic. The service decisions that were described above makes
the selected solutions a future proof one.

5.5. DEPLOY PROCESS

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 42

KRL created a seamless process to maintain fast deployments to support iterations and quick
provides quick fixes. However, this does not mean, it implements a full Continuous Deployment
(CD) at the moment, but it is possible to develop it further when project reaches its
commercialisation development phase.

Figure 33 – Deployment process

The current stages of the Deploy Process:
1. Developers push their code to the Version Control System (GIT)
2. Pull Request created, Code Review needed from a peer developer
3. Fix the code if needed
4. Approval of the Pull Request
5. Approved code merges into the Version Control System
6. Automatic Cloud Build starts on a specific branch
7. If the Build succeeded an Artifact created on the Cloud Storage / Container Registry
8. Cloud Run can use this Container Registry and the Artifact to upgrade to the last version

without an outage.

During commercialisation more steps could be considered, such as automated unit testing or
smoke, integration, end-to-end and UI tests.

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 43

Figure 34 – Deployment process (detail)

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 44

6 PERFORMANCE METRICS

WP6 recommended the initial KPIs to be used for games in the VRHAB-IT. The four-
performance metrics that will be used to benchmark each game developed during this project
will also be used to judge the quality of the games submitted by third-party developers on VR-
HABIT platform. These are:

1. Retention rate – in this metric we look for how long patients keep coming back to the
platform. There could be many reasons why patients walk-away from the platform so
this is the top-most important metric to look for on a daily basis. It is defined as a
percentage of all patients who come back after Day-1, Day-3, Day-7, Day-14 and Day-
30.

2. Number of daily sessions – Building on the retention rate, in this metric, we also look
for the number of sessions each player played per day. It must be pointed out that the
target for this metric might be different for each user for each different game and is
hence set by their therapist. This value could also be less than 1 if the prescription
defines less than 1 session per day (e.g. 3 sessions per week)

3. Session duration - a session is the time from when the player starts playing to the
moment when the activity is suspended. This metric will give us a better understanding
of how players are doing when compared to traditional therapy methods and if the
games are interesting enough to keep the players engaged for a longer period of time.

4. Engagement score - the engagement score is another way of measuring the user
satisfaction. In this metric we will try and see what the players are doing while playing
the game. A number of issues must be addressed; for instance, will the patients be
using the most basic feature only, will they be exploring around menus or environments
to look for additional content and do they replay the same game over and over again
to get a better score? We define this metric in terms of areas traversed with points
given to each one according to the difficulty of finding that particular place and summing
the values up.

7 VALIDATION CRITERIA

7.1. Outline
The purpose of the validation criteria is to allow the development of appropriate mechanisms
to assess the VR Platform and games. These mechanisms ensure that the evolution of the
controller designs and gameplay are fulfilling the goals of allowing functional interaction control
for the different patient groups. Initially, these were derived from the user requirements defined
in deliverables D2.1 (VR Platform Requirements) and D7.1 (Persona Report). In particular, the
VR Games section of this D2.1 outlines, with reference to the game environments proposed
in Task 6.4, how these requirements can be supported within the constraints of available VR
systems and proposed controller designs.

7.2. Re-framing of evaluation to include standard controllers
The process of validation is designed to complement both the activities of Task 7.4 (VR
environment testing and feedback), and the development of the experiment protocols which

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 45

define how the VR-HABIT system will be tested. Initially this was proposed to proceed
iteratively, on an approximate 3-month cycle of feedback, analysis and redesign. However,
delays related to COVID-19 have severely curtailed access to patients and thus initial data is
lacking. This lack of data has also hampered the development of experiment protocols that are
required for some of the project’s ethics applications. In particular, testing in the UK involving
non-CE marked devices requires additional regulatory approval. To mitigate the added delay
of this process, we have re-organised the phases of work to introduce an initial phase using
standard VR controllers and games, with subsequent phases incorporating the VRHAB-IT
controllers and bespoke games. This separation of ethics approvals has allowed data-
gathering activities to proceed as early as COVID-19 restrictions allow. For initial studies, the
focus is on patient experience and system usability (in terms of both physical controllers and
task mechanics). In addition to user comfort and enjoyment, we are using variants of standard
questionnaires to assess each user’s sense of presence and embodiment (deliverable D2.1
provides further detail on these phenomena). This data will be fed back into refinement of
environment designs and gameplay mechanisms.

7.3. User assistance mechanisms
User assistance mechanisms can be thought of as any method applied to gameplay that helps
the user to complete a task that they might otherwise struggle to perform. We have divided
these mechanisms into two categories as follows.

7.3.1. Automated through the control interface
A specific mechanism of interest here is manipulation of user embodiment. In this case the
game will identify the user’s goal and take partial control of the user inputs to facilitate the
completion of that goal. This works in VR because the user does not see the real movements
of their own hands, but instead sees a virtual proxy (or avatar) within the game, and up to a
point will not notice small differences between their proprioceptive sense of how their upper
limbs are moving and the visual representation of their limbs in the virtual environment. For
example, this mechanism can be applied to filtering out tremors from user movement, or to
extend the user’s range of motion. Further details of this phenomenon are described in D2.1.
While the gameplay design can allow various degrees of such assistance to be applied, the
intention currently is that the level of assistance will be set under therapist supervision (i.e. the
therapist will monitor task performance and decide what degree of assistance is appropriate).
It will not be under the control of machine-learning mechanisms within the game, since the
control problem to be resolved here is complex and nuanced, and so requires expert input.

7.3.2. Human-in-the-loop
We have continued to research this type of mechanism through a series of experiments on
“co-pilot” user assistance. Experiments have been conducted under an existing blanket ethics
case which has allowed experiments involving VR equipment with consenting adults as
participants. The initial focus of this work was the development of a prototype to allow split
control of arbitrary VR games across multiple input devices. With the developed prototype, a
second input device is used to manipulate the player's position in the virtual 3D space. This
second device enables motion impaired players to play VR applications that require full body

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 46

movement. Additionally, an identified use case is for the second input device to be operated
by a second player, turning the game into a cooperative task.

To validate the prototype, we conducted a pilot study with eight participants. For the
experiment, the participants played a standard VR game “Space Pirate Trainer” in pairs with
the experimenter. In one role the participant simulated the motion impaired player and had to
play seated while in the other role they controlled the first player’s movement through a regular
Xbox Gamepad. The task in the game was to shoot down flying drones while dodging lasers
that the drones fire in the direction of the player. A player without motion impairments can
perform this through body movement, but in the study, they rely on the second player to move
them out of the way of incoming fire. Participants were interviewed after each experience.
Factors that were investigated were fun, engagement, communication, responsibility, and
ownership of the final score. In general feedback was positive, while ownership of
achievements within the game was not straightforward.

A subsequent experiment explored the co-pilot controlling aspects of the player’s hand
movement, for example by allowing the co-pilot to extend the reach of the player beyond their
usual range to reach distant or high objects in a game, while the player retained control of their
hand and its actions. In this study seated healthy adult players, paired with a co-pilot and
playing a simulated office environment game, reported that enjoyment was maintained while
assistance was provided, and that they were able to mitigate some of the limitations of playing
sitting down.

Different aspects of the co-piloting work have been presented at the XR Accessibility
Workshop at ACM IMX 2020; IEEE VR 2021 Workshop on Novel Input Devices and Interaction
Techniques (NIDIT); and the Institute of Physics and Engineering in Medicine (IPEM)
Emerging Technologies.

7.4. Development of Experimental Protocols
Validation of the PRIME-VR2 games ultimately requires data fed back from user trials. In
Section 7.2 we have described how the overarching development of the experimental
framework has been redesigned to allow data to be captured as early as possible in the wake
of delaying factors. These factors have been due to both COVID-19 restrictions and supply-
chain issues in electronics restricting the availability of the selected VR system (Valve Index)
throughout Europe. All three living labs now have working systems, and both St James
Hospital (Malta) and KNRC (Cyprus) have obtained ethical approval for initial testing.
Arrangements are currently underway to send a researcher from UCL to Cyprus and Malta to
oversee trials involving co-piloting (see Section 9.3 above).

Detail of the derivation and development of experimental protocols for each of the three living
labs is described in deliverable D7.2 (Ethical approval and protocol validation). Here this
information is summarised to include only those details relevant to the validation of the Prime-
VR2 platform, rather than the motivating factors behind each element. At all 3 Living Labs the
experimental protocols have been divided into similar phases:

• Physical and spatial measurements from participants to guide the design of Prime-
VR’s bespoke physical controllers.

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 47

• Measurement and evaluation of off-the-shelf systems
• Measurements and evaluation of bespoke Prime-VR games

It is the last of these elements that is of particular interest here, since this is what relates to the
integrated prototype described in this document. While the patient categories at each of the
living labs are very different, the main research question of the study at each lab is similar, in
that it involves the evaluation of the feasibility and efficacy of VR as an intervention for each
class of patient. Following from this, a larger number of subsidiary questions arise, and the
system design and evaluation cycle must address each of these. Examples of metrics that
were considered include:

• Accessibility and usability – are patients able to use the platform easily, and perform
the tasks within each game effectively?

• Retention rate – how often, and for how long, do patients come back to use the
platform?

• Performance - do patients improve their performance of the VR tasks and games over
time, and is this associated with increased levels of functioning in real-world tasks?

• Adverse side-effects – are there any negatively associated effects of using the system.
This might be dizziness or nausea induced by the VR games, or frustration with the
system if it is too hard to use.

A protocol for off-the-shelf systems has been developed (for the UK this is still currently under
review). A subsequent protocol for the bespoke system is under development, but subject to
modification based on initial data. Data capture within this protocol includes:

• Recruitment rate
• Accessibility
• Length and number of the sessions
• Incidence of adverse events
• Data acquired by the VR system itself (position, orientation and acceleration tracking

from the headset and hand controllers)
• Video recording of both participants and a rendering of their view of the VR

environment.
• Technical problems arising with the VR technology will be recorded

Specific data captured is dependent upon whether the VR experience is with or without co-
piloting. For VR experiences without co-piloting, standardised questionnaires are used to
assess the following:

• Simulator-sickness: the virtual environments and interaction in this study are
designed to avoid the types of visual stimulus that can lead to simulator sickness (e.g.,
vection, visual-vestibular mismatch). For this reason, we are not applying the full
Simulator-sickness questionnaire (SSQ) (Kennedy et al., 1993) that is commonly used,
but will instead embed a single question (within the presence questionnaire) to capture
simulator sickness symptoms.

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 48

• Presence: to capture user “presence” (the degree to which a person in VR responds
to interactions and events in the simulated VR world as if they are real) we use a
questionnaire derived from (Slater, Usoh and Steed, 1994), with additional questions
that are specific to the virtual environments and gameplay. It has become standard
practice to investigate presence in this way, and several variants of presence
questionnaires are commonly used.

• Embodiment: related to the notion of presence, is the user’s sense of embodiment i.e.,

their sense of agency and control over their virtual body. Recent research efforts have
made progress toward validated questions relating to body ownership, location, agency,
and motor control (Peck and Gonzalez-Franco, 2021) and our questionnaire is based
on this, though restricting questions to those relevant to the nature of our study.

VR experiences involving co-piloting use the following data for assessment:

• The number of activations of the co-pilot
• Screen-capture and tracking information
• The user’s experience with the co-piloting feature and their human co-pilot will be

assessed with two short, standardised questionnaires after the session:

1. The patient’s experience with co-piloting will be captured using the UEQ-S
(Schrepp, Hinderks and Thomaschewski, 2017). It is a shortened version of the
User Experience Questionnaire, a standardised questionnaire to measure user
experience.

2. To capture the patient’s experience with the co-pilot, a shortened version of the
Networked Minds Measure of Social Presence (NMMoSP) (Harms and Biocca,
2004) will be used. It is a standardised questionnaire designed to capture how
a user perceives social presence, i.e., how they feel about another person that
shares the virtual environment with them. While the co-pilot does not have a
visual representation in the virtual world, they still share it with the patient
through their inputs. Due to this lack of representation, not all items of the
questionnaire are applicable, and a shortened version will be used.

Following the VR session, a semi-structured interview will be undertaken within one week. This
will capture the patient’s views on the system: its comfort, accessibility, usefulness, and
potential ways for improvement. The semi-structured interview will also be used to follow up
on responses and effects that the researchers might have observed during sessions.

7.5. Evaluation of PRIME-VR2 Platform Interface
The PRIME-VR2 platform interface was designed and implemented to support the user
requirements captured through project deliverables, focus groups and meetings with living labs
project partners. An initial assessment of the platform mostly sought to address technical
issues with the platform interface. A second and more detailed assessment was performed
as a guided walkthrough with a member of the clinical team from GDIH. This assessment
focused on 2 classes of user: therapist and patient, since these are the principal users of the
system. The evaluation was based on the cognitive walkthrough method (Polson et al, 1992).
This is a technique developed for evaluation of user interfaces, grounded in theories of

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 49

exploratory learning. In other words, it assesses how easily new users can intuit the actions to
perform desired tasks. In the main, the interface was found to be simple and intuitive to use,
following specifications derived in earlier design work. However, several issues were raised
and these are currently being addressed. A further iteration will take place once the platform
is being used by patient populations. At this stage it is expected that only minor changes and
bug fixes will be required.

8 CONCLUSION

The Integrated Prototype Demonstration presents all achievements so far, the regarding
details about the Web Portal, PrimeVR2 Unity SDK, and the VR Ecosystem (Rehabilitation
Games). It also defined the terminology and coding standards to align the work between WP6
members.

The Web Portal, PrimeVR2 Unity SDK, and the Rehabilitation Games create an integrated
environment. Within this ecosystem, the Doctors and their Patients can work seamlessly to
achieve their rehabilitation goals. Because every data from the games is uploaded into the
Web Portal in real-time, the analysis is much easier even remotely.

The system remains extendable in the future with new games and metrics. Later goals can be
to extend the system with multiplayer functions or third-party developers.

Keep in mind in the implementation phase there can be slight changes in the execution. This
is mostly related to late information from other Work Packages or findings that were not
previously known.

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 50

9 REFERENCES

Harms, C. & Biocca, A.F. (2004). Internal consistency and reliability of the networked minds
social presence measure. Seventh Annual International Workshop: Presence 2004.

Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator Sickness
Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. The
International Journal of Aviation Psychology, 3(3), 203–220.
https://doi.org/10.1207/s15327108ijap0303_3

Peck, T. C., & Gonzalez-Franco, M. (2021). Avatar Embodiment. A Standardized
Questionnaire. Frontiers in Virtual Reality, 1, 575943.
https://doi.org/10.3389/frvir.2020.575943

Schrepp, M., Hinderks, A., & Thomaschewski, J. (2017). Construction of a Benchmark for the
User Experience Questionnaire (UEQ). International Journal of Interactive Multimedia
and Artificial Intelligence, 4(4), 40. https://doi.org/10.9781/ijimai.2017.445

Slater, M., Usoh, M., & Steed, A. (1994). Depth of Presence in Virtual Environments.
Presence: Teleoperators and Virtual Environments, 3(2), 130–144.
https://doi.org/10.1162/pres.1994.3.2.130

10 APPENDIX

10.1. PRIME-VR2 Gameplay API
Version: 1.0.1
This is the API definition for the PRIME-VR2 Web Portal project. For more information please
READ THE SPECIFICATION.
Schemes: https

10.2. Summary

10.2.1. Tag: gameplay
Gameplay API

Operation Description
POST /GAMEPLAY/SESSIONS Create Game Session for Patient
GET /GAMEPLAY/GAMES List Games (previously "SDK Details")
GET
/GAMEPLAY/GAMES/{GAMEID}/PATIENTS/{P
ATIENTID}/CONFIGURATION

Get Game Configuration for Patient

10.2.2. Tag: file
FileService API

Operation Description
GET /FILES/{FILEID} Get a file from file service

10.2.3. Tag: auth
AuthService API

Operation Description
POST /LOGIN Return an bearer token

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 51

GET /PROFILE/ME Return the logged in user profile data (by the
given token)

10.3. Security

10.3.1. auth_svc
Type: oauth2
Flow:
implicit
AuthorizationUrl:
HTTP://AUTH-API.PRIMEVR.COM/LOGIN
Scopes:
gameplay.config: Get Game config for User
gameplay.session: Create Gameplay Session for User
games.index: List Games

10.4. Paths
Get a file from file service

10.4.1. GET /files/{fileId}
Tags: FILE

fileId The ID of the file path string

application/json
200 OK
Success
404 Not Found
File not found
List Games (previously "SDK Details")

10.4.2. GET /gameplay/games
Tags: GAMEPLAY

application/json
200 OK
Success
GAMELISTITEM

auth_svc games.index

Get Game Configuration for Patient

10.4.3. GET /gameplay/games/{gameId}/patients/{patientId}/configuration
Tags: GAMEPLAY

gameId The ID of the

game
path integer

patientId The ID of the
patient

path string

application/json
200 OK
Success
USERGAMECONFIGURATION
400 Bad Request

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 52

Invalid input or game disabled
404 Not Found
Game or Patient not found

auth_svc gameplay.config

Create Game Session for Patient

10.4.4. POST /gameplay/sessions
Tags: GAMEPLAY
GAMEPLAYSESSIONINPUTMODEL

application/json
200 OK
Success
400 Bad Request
Invalid input or game disabled
404 Not Found
Game or Patient not found

auth_svc gameplay.session

Return an bearer token

10.4.5. POST /login
Tags: AUTH
format: { data: { email: , password: } }'
AUTHLOGINOBJECT

application/json
200 OK
Success
401 Unauthorized
Authentication Failed
Return the logged in user profile data (by the given token)

10.4.6. GET /profile/me
Tags: AUTH

application/json
200 OK
Success
401 Unauthorized
UnauthorizedError

10.5. Schema definitions

10.5.1. AuthData: object
email: string
password: string

10.5.2. AuthLoginObject: object
data: AUTHDATA

10.5.3. GameListItem: object
id: integer
name: string

PRIME-VR2_D_WP6_KRL_D6.3-INTEGRATED PROTOTYPE DEMONSTRATION 53

version: integer
isEnabled: boolean
iconId: string
previewImageId: string
gameFileId: string
introVideoId: string
description: string
recommendedUses: string
recommendedGoals: GOALS

10.5.4. GameplaySessionInputModel: object
patientId: string
"74548492-a159-4bfb-a2cf-43ea51a85dfa"
gameId: number
12
startedAt: string
An ISO-formatted time string
"2020-08-11T13:35:49Z"
duration: number
The duration of the gameplay session in minutes
42
score: number
The score achieved during the session
10078
achievements: string[]
An array of symbolic achievement names unlocked during this session
[
 "100-kills",
 "discovered-hidden-room"
]string
variables: object[]
An array of variable names and values for this session (these will be used to calculate the
leaderboard and display charts).
object
name: string

The name of the variable
"kills"
value: integer

The value of the variable
48
state: object
Custom state object the game can use to calculate achievements from

10.5.5. Goals: object
gameplayTimePerDay: integer
sessionsPerWeek: integer

10.5.6. UserGameConfiguration: object
config: object
Game configuration object that conforms to the configuration JSON schema specified when
creating the game
state: object
Custom state object the game can use to calculate achievements from

